当前位置: 首页 > news >正文

工商网站如何做实名网站的设计流程

工商网站如何做实名,网站的设计流程,网页游戏在哪里制作,企业门户平台登录文章目录 根据二叉树创建字符串思路代码 二叉树的层序遍历思路代码 二叉树的最近公共祖先思路代码 二叉搜索树与双向链表思路代码 从前序与中序遍历序列构造二叉树思路代码 总结 根据二叉树创建字符串 题目: 样例: 可以看见,唯一特殊的就…

在这里插入图片描述

文章目录

  • 根据二叉树创建字符串
    • 思路
    • 代码
  • 二叉树的层序遍历
    • 思路
    • 代码
  • 二叉树的最近公共祖先
    • 思路
    • 代码
  • 二叉搜索树与双向链表
    • 思路
    • 代码
  • 从前序与中序遍历序列构造二叉树
    • 思路
    • 代码
  • 总结

根据二叉树创建字符串

题目:
在这里插入图片描述
样例:
在这里插入图片描述
在这里插入图片描述
可以看见,唯一特殊的就是左子树,当右子树存在的时候左子树不存在的时候,我们需要用()代表空,但是没有左子树,又没有右子树的时候,我们不需要做任何处理。

思路

结合题目和样例,我们可以知道,特殊的是右子树存在但是左子树不存在的情况,这种情况,可以归类为root->left||root->right。这种情况,我们就要处理左子树。首先我们应该处理一下需要返回的字符串,
在这里插入图片描述

  1. 有左子树的情况,当有左子树的时候,我们直接递归左子树,并将结果加上()
  2. 没有左子树,但是有有右子树,也需要递归一次左子树,因为需要加上空的()
  3. 有右子树,直接递归右子树,最后在结果上加上()。

代码

class Solution {
public:string tree2str(TreeNode* root) {if(root==nullptr) return  "";string result=to_string(root->val);if(root->left||root->right){result+="("+tree2str(root->left)+")";}if(root->right){result+="("+tree2str(root->right)+")";}return result;}
};

二叉树的层序遍历

题目:
在这里插入图片描述
样例:
在这里插入图片描述

思路

这道题可以直接借助队列,借助队列的时候我们还需要一个levelsize来记录每层的个数即可

代码

class Solution {
public:vector<vector<int>> levelOrder(TreeNode* root) {if(root==nullptr)return vector<vector<int>>();//创建队列queue<TreeNode*> q;q.push(root);vector<vector<int>> result;int levelsize=1;while(!q.empty()){vector<int> level;for(int i=0;i<levelsize;i++){auto front=q.front();q.pop();if(front->left)q.push(front->left);if(front->right)q.push(front->right);level.push_back(front->val);}result.push_back(level);levelsize=q.size();}return result;}
};

二叉树的最近公共祖先

题目:
在这里插入图片描述
样例:
在这里插入图片描述

思路

需要找公共祖先,首先我们肯定要找到这两个节点的位置,然后这两个节点向上返回,我们用left表示是向左子树搜索这个节点,用right表示向右子树搜索这两个节点,如果能找到就返回对应的节点,p或者q,如果没找到就返回nullptr,如果left和right都不为空说明p和q分布在左子树和右子树,并且root就是两个的最近的祖先,如果其中一个是nullptr说明,p和q分布在一边,直接返回不为空的那个就是最近公共祖先。

代码

class Solution {
public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {//找对应的节点if(root==nullptr||root==p||root==q)return root;//记录左子树的结果TreeNode* left=lowestCommonAncestor(root->left,p,q);//记录右子树的结果TreeNode* right=lowestCommonAncestor(root->right,p,q);//如果左右子树都不为空则说明和q分布在左子树和右子树if(left&&right)return root;//如果其中一个是空,则说明p是祖先或者q是祖先return (left==nullptr)?right:left;}
};

二叉搜索树与双向链表

题目:
在这里插入图片描述
样例:
在这里插入图片描述

思路

首先我们来看看子问题:
这肯定是一个中序遍历吧,因为只有中序遍历才能是顺序的,这很明显,接下来就是我们需要处理的中序中间的部分,就是节点之间关系的转变。
在这里插入图片描述

从这里可以知道左指针是指向前驱的指针,右指针是指向后继的指针。
在这里插入图片描述
这里我们分别对左子树和右子树进行中序遍历,第一个遍历到4,因为4是第一个,所以前驱应该是nullptr,因为每次我们都需要前驱,所以这里我们用parent表示前驱,parent就应该被初始化为nullptr,当中序遍历到达4的时候4是不需要处理的因为4的左子树和右子树都是nullptr,唯一需要处理的就是4的前驱应该是nullptr,处理完之后,我们需要返回前驱,因为6需要指向前驱,前驱不为空的情况下还需要将前驱的右指针指向后继,4的后继是6,所以我们只需要进行两个步骤,第一个步骤是处理前驱,前驱是已知节点指向前驱节点,所以我们不用担心是否为空,因为我们的前驱parent初始化是nullptr,所以在parent指向后继的时候,需要判断一下parent是否是空。
最后再改变前驱即可左子树的前驱就是最后一个访问的节点,左中右,所以上图应该是8。

代码

class Solution {
public:TreeNode* parent=nullptr;void InOrder(TreeNode* root){//root是nullptr返回if(!root)return;//中序遍历InOrder(root->left);//先将root的前驱指针指向parent,root赋值给parentroot->left = parent;if(parent) parent->right=root;parent = root;InOrder(root->right);}//左指针指向前面,右指针指向后面TreeNode* Convert(TreeNode* pRootOfTree) {if(pRootOfTree==nullptr)return nullptr;TreeNode* first=pRootOfTree;while(first->left) first=first->left;InOrder(pRootOfTree);return first;}
};

从前序与中序遍历序列构造二叉树

题目:
在这里插入图片描述
样例:
在这里插入图片描述

思路

首先已知两个序列:
在这里插入图片描述
前序和中序,根据前序的特性我们可以知道,第一个元素肯定是根节点,所以这里我们可以根据前序遍历找到根节点,然后在中序遍历中找到根节点的位置。
在这里插入图片描述
找到在中序中的位置之后我们可以通过中序的特性,左边是左子树,右边是右子树,来对左区间和右区间递归,根节点的left指向左区间,根节点的right指向右区间,然后循环这个过程。

代码

class Solution {
public://构建二叉树TreeNode* Build(vector<int>& preorder,int preL,int preR,vector<int> inorder,int inL,int inR){//当左边大于右边的时候返回nullptrif(preL>preR)return nullptr;//找出根节点的值int rootval=preorder[preL];TreeNode *root=new TreeNode(rootval);//找到在中序遍历中的位置int index=inL;while(inorder[index]!=rootval) index++;//计算左子树在前序中的位置int leftSize=index-inL;root->left=Build(preorder,preL+1,preL+leftSize,inorder,inL,index-1);root->right=Build(preorder,preL+leftSize+1,preR,inorder,index+1,inR);return root;}TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {return Build(preorder,0,preorder.size()-1,inorder,0,inorder.size()-1);}
};

总结

通过多道二叉树题目的练习,我们全面了解了二叉树的各种操作和特性。每道题目都涉及不同的场景和技巧,如节点删除、树的遍历、以及特殊结构转换等,不仅加深了对二叉树结构的理解,也提升了编写递归和迭代算法的能力。这些经验为进一步深入数据结构和算法的学习打下了扎实的基础。希望这篇总结能够帮助你在二叉树题目中更得心应手,为更复杂的数据结构问题做好准备。

http://www.ritt.cn/news/10496.html

相关文章:

  • 找网络公司做的网站到期后 备案的域名属于备案企业还是网络公司关键词排名的工具
  • pc网站页面百度关键词推广费用
  • 建一个设计网站要多少钱seo优化咨询
  • behance网站百度云搜索入口
  • 网站管理登录系统品牌推广经典案例
  • 做钟点工 网站seo网站推广优化
  • 园区网站建设山西seo基础教程
  • 网站怎么做成小程序广州网络营销推广公司
  • 燕窝网站怎么做的新闻报道最新消息今天
  • 网站流量数据分析百度seo网站优化服务
  • 一个门户网站源码厦门seo全网营销
  • 做pc端网站哪家好企业推广的渠道有哪些
  • 阜阳市建设工程质量检测站网站产品如何做线上推广
  • 每年网站备案抽查苏州网站建设书生商友
  • 仙桃网站设计龙华线上推广
  • 做公众号用什么网站吗百度竞价关键词出价技巧
  • 个人网站备案查询推广普通话奋进新征程
  • 河南郑州建设网站宁波优化网页基本流程
  • 淡水网站建设哪家便宜百度一下官网首页
  • 诚信网站备案中心企业网站制作要求
  • 吉安做网站促销活动推广语言
  • 犀牛云做的网站怎么样网站建设设计
  • 网站建设的费用包括哪些内容上海哪家seo公司好
  • 电商网站如何优化在哪里找软件开发公司
  • 网页游戏设计培训学校网站seo顾问
  • 被执行人信息查询搜索引擎优化策略有哪些
  • 宜昌做网站的公司公司官网制作多少钱
  • 做网站的毕设开题依据网络推广app
  • 免费自己做网站吗如何建网站不花钱
  • 比较好的网站开发公司网络推广培训班哪家好