当前位置: 首页 > news >正文

专业网页制作什么好标题优化

专业网页制作什么好,标题优化,用jsp做的网站代码,高端品牌车上一篇博客介绍了BP-GA:BP神经网络遗传算法(BP-GA)函数极值寻优——非线性函数求极值,本篇博客将介绍用PSO(粒子群优化算法)优化BP神经网络。 1.优化思路 BP神经网络的隐藏节点通常由重复的前向传递和反向传播的方式来决定&#…

上一篇博客介绍了BP-GA:BP神经网络遗传算法(BP-GA)函数极值寻优——非线性函数求极值,本篇博客将介绍用PSO(粒子群优化算法)优化BP神经网络。

1.优化思路

BP神经网络的隐藏节点通常由重复的前向传递和反向传播的方式来决定,通过修改或构造训练方式改隐藏的节点数,相应的初始权重和阈值也会随之变化,从而影响网络的收敛和学习效率。为了减少权重和阈值对模型的影响,采用粒子群算法对BP神经网络模型的权重和阈值进行优化,从而加快网络的收敛速度和提高网络的学习效率。

优化的重点在于如何构造关于模型权重和阈值的目标函数。将PSO(粒子群优化算法)的适应度函数设为预测效果和测试输出的误差绝对值,通过BP神经网络训练得到不同权重和阈值对应的适应度,当寻找的权重和阈值使得适应度最小,即误差最小时,则为最优权值和阈值,再将最优值返回用于构建BP神经网络。

2.测试函数

y = x 1 2 + x 2 2 y = x_1^2+x_2^2 y=x12+x22
要求:拟合未知模型(预测)。
条件:已知模型的一些输入输出数据。

已知一些输入输出数据(用rand函数生成输入,然后代入表达式生成输出):

for i=1:4000input(i,:)=10*rand(1,2)-5;output(i)=input(i,1)^2+input(i,2)^2;
end

3.完整代码

data.m

for i=1:4000input(i,:)=10*rand(1,2)-5;output(i)=input(i,1)^2+input(i,2)^2;
end
output=output';save data input output

PSO_BP_fun.m

function error = PSO_BP_fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn)%提取
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);%网络进化参数
net.trainParam.epochs=20;
net.trainParam.lr=0.1;
net.trainParam.goal=0.00001;
net.trainParam.show=100;
net.trainParam.showWindow=0;%网络权值赋值
net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2;%网络训练
net=train(net,inputn,outputn);an=sim(net,inputn);error=sum(abs(an-outputn));

PSO_BP.m

%% 清空环境
clc
tic%读取数据
load data input output%节点个数
inputnum=2;
hiddennum=4;
outputnum=1;
opnum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum;
% 需要优化的参数个数%% 训练数据预测数据提取及归一化
%从1到4000间随机排序
k=rand(1,4000);
[m,n]=sort(k);%划分训练数据和预测数据
input_train=input(n(1:3900),:)';
output_train=output(n(1:3900),:)';
input_test=input(n(3901:4000),:)';
output_test=output(n(3901:4000),:)';[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);%构建网络
net=newff(inputn,outputn,hiddennum);% 参数初始化
%粒子群算法中的两个参数
c1 = 1.49445;
c2 = 1.49445;maxgen=100;   % 进化次数  
sizepop=30;   %种群规模%个体和速度最大最小值
Vmax=1;
Vmin=-1;
popmax=5;
popmin=-5;for i=1:sizepoppop(i,:)=5*rands(1,opnum);V(i,:)=rands(1,opnum);fitness(i)=PSO_BP_fun(pop(i,:),inputnum,hiddennum,outputnum,net,inputn,outputn);
end% 个体极值和群体极值
[bestfitness bestindex]=min(fitness);
zbest=pop(bestindex,:);   %全局最佳
gbest=pop;    %个体最佳
fitnessgbest=fitness;   %个体最佳适应度值
fitnesszbest=bestfitness;   %全局最佳适应度值%% 迭代寻优
for i=1:maxgeni;for j=1:sizepop%速度更新V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));V(j,find(V(j,:)>Vmax))=Vmax;V(j,find(V(j,:)<Vmin))=Vmin;%种群更新pop(j,:)=pop(j,:)+0.2*V(j,:);pop(j,find(pop(j,:)>popmax))=popmax;pop(j,find(pop(j,:)<popmin))=popmin;%自适应变异pos=unidrnd(opnum);if rand>0.95pop(j,pos)=5*rands(1,1);end%适应度值fitness(j)=PSO_BP_fun(pop(j,:),inputnum,hiddennum,outputnum,net,inputn,outputn);endfor j=1:sizepop%个体最优更新if fitness(j) < fitnessgbest(j)gbest(j,:) = pop(j,:);fitnessgbest(j) = fitness(j);end%群体最优更新 if fitness(j) < fitnesszbestzbest = pop(j,:);fitnesszbest = fitness(j);endendyy(i)=fitnesszbest;    end%% PSO结果分析
plot(yy)
title(['适应度曲线  ' '终止代数=' num2str(maxgen)]);
xlabel('进化代数');ylabel('适应度');x=zbest;%% 把最优初始阈值权值赋予网络预测
% %用PSO优化的BP网络进行值预测
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2;%% PSO-BP网络训练
%网络进化参数
net.trainParam.epochs=120;
net.trainParam.lr=0.005;
net.trainParam.goal=4e-8;%网络训练
[net,per2]=train(net,inputn,outputn);%% PSO-BP网络预测
%数据归一化
inputn_test=mapminmax('apply',input_test,inputps);
inputn_train=mapminmax('apply',input_train,inputps);
an=sim(net,inputn_test);
an1=sim(net,inputn_train);
test_PSOBP=mapminmax('reverse',an,outputps);
train_PSOBP=mapminmax('reverse',an1,outputps);%% PSO-BP误差
error_PSOBP=test_PSOBP-output_test;
disp('PSO-BP results:');
errorsum_PSOBP=sum(abs(error_PSOBP))figure(1);
plot(test_PSOBP,':og');
hold on
plot(output_test,'-*');
legend('Predictive output','Expected output','fontsize',10.8);
title('PSO-BP network output','fontsize',12);
xlabel("samples",'fontsize',12);figure(2);
plot(error_PSOBP,'-*');
title('PSO-BP Neural network prediction error');
xlabel("samples",'fontsize',12);figure(3);
plot(100*(output_test-test_PSOBP)./output_test,'-*');
title('PSO-BP Neural network prediction error percentage (%)');
xlabel("samples",'fontsize',12);figure(4);
plot(100*(output_train-train_PSOBP)./output_train,'-*');
title('PSO-BP Neural network training error percentage (%)');
xlabel("samples",'fontsize',12);toc

4.运行效果

hiddennum = 4:

输出:

PSO-BP results:errorsum_PSOBP =1.2443历时 109.578562 秒。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

hiddennum = 5:

输出:

PSO-BP results:errorsum_PSOBP =0.3804历时 303.508080 秒。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

http://www.ritt.cn/news/1183.html

相关文章:

  • 网站建设 提成百度广告投放
  • 郴州做网站的怎样做电商 入手
  • 标准型网站---北京网站建设seo网络推广什么意思
  • 西宁网站制作 青大数据营销 全网推广
  • 个人网站首页模板seo怎样
  • 找网站建设企业市场调研的步骤
  • 网站建设公司如何运营信息流优化师需要具备哪些能力
  • 济南做网站建设公司app怎么推广运营
  • 房产网站建设seo咨询顾问
  • 怎么编辑网站内容东莞网站推广大全
  • 旅游门票做的最好的是哪个网站aso是什么意思
  • 好用的网站链接东莞今天的最新通知
  • 广西网站建设开发外包推广公司产品
  • 做网站临沂南宁seo排名收费
  • 杭州做家教网站解封后中国死了多少人
  • wordpress footer 修改网站优化种类
  • java做网站是否免费怎么进行网络营销
  • 政府网站建设介绍百度官网下载电脑版
  • 网页版开发者内容管理工具福州百度首页优化
  • 帮人负责做网站叫什么工作关键词排名哪里查
  • 用小程序做视频网站指数运算法则
  • 东莞公司网站做优化代做百度关键词排名
  • 做h5网站要多少钱今日nba比赛直播
  • 四川华海建设集团有限公司网站奶茶推广软文200字
  • 营销型网站建设风格设定seo关键词优化排名软件
  • 网站开发需要解决难题品牌宣传的推广
  • 番禺定制型网站建设怎么弄推广广告
  • 南京网站制作有限公司成都关键词自然排名
  • 做网站什么空间好关键词搜索排名
  • 济南做网站优化网站内容优化方法