当前位置: 首页 > news >正文

设计网站做海报网站流量查询站长之家

设计网站做海报,网站流量查询站长之家,网站建设公司国内技术最强,百度做的网站靠谱吗六、图 6.1 图的基本概念 图的定义 图:图G由顶点集V和边集E组成,记为G (V, E),其中V(G)表示图G中顶点的有限非空集;E(G) 表示图G中顶点之间的关系(边)集合。若V {v1, v2, … , vn},则用|V|…

六、图

6.1 图的基本概念

图的定义

:图G由顶点集V和边集E组成,记为G = (V, E),其中V(G)表示图G中顶点的有限非空集;E(G) 表示图G中顶点之间的关系(边)集合。若V = {v1, v2, … , vn},则用|V|表示图G中顶点的个 数,也称图G的阶,E = \left \{ (u, v) | u\in V, v\in V \right \},用|E|表示图G中边的条数。

注意:线性表可以是空表,树可以是空树,但图不可以是空,即V一定是非空集

无向图:若E是无向边(简称边)的有限集合时,则图G为无向图。边是顶点的无序对,记为(v, w)或(w, v),因为(v, w) = (w, v),其 中v、w是顶点。可以说顶点w和顶点v互为邻接点。边(v, w) 依附于顶点w和v,或者说边(v, w)和顶点v、w相关联

有向图:若E是有向边(也称弧)的有限集合时,则图G为有向图。 弧是顶点的有序对,记为<v,w>,其中v、w是顶点,v称为弧尾,w称为弧头,<v,w>称为从顶点v到顶点w的弧,也称 v邻接到w,或w邻接自v。<v,w> ≠<w,v>
                            
简单图——① 不存在重复边; ② 不存在顶点到自身的边  (数据结构课程只探讨 “简单图”)

多重图——图G中某两个结点之间的边数多于一条,又允许顶点通过同一条边和自己关联

顶点的度、入度、出度

无向图:顶点v的度是指依附于该顶点的边的条数,记为TD(v)。
在具有n个顶点、e条边的无向图中, 即无向图的全部顶点的度的和等于边数的2倍

有向图:入度是以顶点v为终点的有向边的数目,记为ID(v);
出度是以顶点v为起点的有向边的数目,记为OD(v)。
顶点v的度等于其入度和出度之和,即TD(v) = ID(v) + OD(v)。
在具有n个顶点、e条边的有向图中,,即入度和出度的数量相等且等于e

顶点的关系描述

路径——顶点vp到顶点vq之间的一条路径是指顶点序列,               
回路——第一个顶点和最后一个顶点相同的路径称为回路或环
简单路径——在路径序列中,顶点不重复出现的路径称为简单路径。 
简单回路——除第一个顶点和最后一个顶点外,其余顶点不重复出现的回路称为简单回路。
路径长度——路径上边的数目
点到点的距离——从顶点u出发到顶点v的最短路径若存在,则此路径的长度称为从u到v的距离。 若从u到v根本不存在路径,则记该距离为无穷(∞)。
无向图中,若从顶点v到顶点w有路径存在,则称v和w是连通
有向图中,若从顶点v到顶点w和从顶点w到顶点v之间都有路径,则称这两个顶点是强连通

图G中任意两个顶点都是连通的,则称图G为连通图,否则称为非连通图。

若图中任何一对顶点都是强连通的,则称此图为强连通图。

研究图的局部—子图、生成子图

设有两个图G = (V, E)和G ′ = (V ′ , E ′ ),若V ′ 是V的子集,且 E ′ 是 E的子集,则称G ′ 是G的子图
若有满足V(G ′ ) = V(G)的子图G ′ ,则称其为G的生成子图

有向图的子图和生成子图也是一样的

无向图中的极大连通子图称为连通分量
       子图必须连通,且包含尽可能多的顶点和边

有向图中的极大强连通子图称为有向图的强连通分量
        
子图必须强连通,同时 保留尽可能多的边

生成树:连通图的生成树是包含图中全部顶点的一个极小连通子图。
若图中顶点数为n,则它的生成树含有 n-1 条边。对生成树而言,若砍去它的一条边,则会变成非连通 图,若加上一条边则会形成一个回路。(因此边要尽可能的少,但要保持连通)

生成森林:在非连通图中,连通分量的生成树构成了非连通图的生成森林

边的权、带权图/网

边的权——在一个图中,每条边都可以标上具有某种含义的数值,该数值称为该边的权值
带权图/网——边上带有权值的图称为带权图,也称
带权路径长度——当图是带权图时,一条路径上所有边的权值之和,称为该路径的带权路径长度

特殊形态的图

无向完全图——无向图中任意两个顶点之间都存在边
若无向图的顶点数|V|=n,则\left | E \right |\in \left [ 0,C_{n}^{2}\textrm{} \right ] = \left [ 0,n(n-1)/2 \right ]

有向完全图——有向图中任意两个顶点 之间都存在方向相反的两条弧
若有向图的顶点数|V|=n,则\left | E \right |\in \left [ 0,2C_{n}^{2}\textrm{} \right ] = \left [ 0,n(n-1) \right ]

稀疏图:边数很少的图称为稀疏图  反之称为稠密图
         
——不存在回路,且连通的无向图
n个顶点的树,必有n-1条边。
常见考点:n个顶点的图,若 |E|>n-1,则一定有回路

有向树——一个顶点的入度为0、其余顶点的 入度均为1的有向图,称为有向树

http://www.ritt.cn/news/11970.html

相关文章:

  • 自适应网站建设方案西安新站网站推广优化
  • 网站运营发展前景sem扫描电子显微镜
  • 免费微信网站建设外链工具
  • 成都网站建设哪家网站制作推广
  • 长沙做网站找哪家好域名注册服务网站
  • 嘉兴市城市建设门户网站seo优化视频教程
  • 怎么评价网站的好坏广告公司推广
  • 旅游app排行榜前十名seo博客教程
  • wordpress 评论时间无锡seo公司找哪家好
  • github 可以做网站吗德芙巧克力的软文500字
  • wordpress生成pdf上海网站seo优化
  • 仿励志一生网站整站源码 带数据软文宣传推广
  • 如何做自动交易网站seo优化操作
  • wordpress 升级 ftp360优化大师下载安装
  • 聚诚商务做网站多少钱百度seo策略
  • 企业所得税政策最新2024税率杭州网站优化服务
  • 网站费有发票怎么做会计分录电商运营公司排名
  • wordpress 经典网站竞价推广代运营
  • 河南两学一做网站seo还有哪些方面的优化
  • 国家高新技术企业认定机构站长工具seo综合查询权重
  • 甘肃手机版建站系统信息seo全称
  • 苏州模板网站建站百度seo2022新算法更新
  • 网站流量下降原因自己做seo网站推广
  • 如何制作一个企业网站seo关键词排优化软件
  • 网站做优化效果怎么样产品免费推广网站有哪些
  • 广州seo网站推广费用品牌策划书
  • 网站建设的开源平台大数据营销系统软件
  • 手机网站无响应襄阳百度开户
  • 阜宁县住房城乡建设局网站网推平台有哪些比较好
  • 运城手机网站制作上海做网站优化