当前位置: 首页 > news >正文

做室内装修设计的网站网站查询

做室内装修设计的网站,网站查询,建网站要钱吗,做网站前台有什么要求文章目录 1. 哈希概念2. 哈希冲突3. 哈希函数4. 哈希冲突解决4.1 闭散列4.2 开散列 unordered 系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构。 1. 哈希概念 顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系&#xff…

文章目录

  • 1. 哈希概念
  • 2. 哈希冲突
  • 3. 哈希函数
  • 4. 哈希冲突解决
    • 4.1 闭散列
    • 4.2 开散列

在这里插入图片描述

unordered 系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构。

1. 哈希概念

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为 O(N),平衡树中为树的高度,即 O( l o g 2 N log_2 N log2N),搜索的效率取决于搜索过程中元素的比较次数。

理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素

如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素

当向该结构中:

  • 插入元素

    根据待插入元素的关键码,以此函数计算出该元素的存储位置,并按此位置进行存放;

  • 搜索元素

    对元素的关键码进行同样的计算,把求得的函数值当作元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功。

该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者散列表)

例如:数据集合 { 1, 7, 6, 4, 5, 9 };

哈希函数设置为:hash(key) = key % capacity; capacity 为存储元素底层空间总的大小。

在这里插入图片描述

用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快

问题:按照上述哈希方式,向集合中插入元素 44,会出现什么问题?

2. 哈希冲突

对于两个数据元素的关键字 k i k_i ki k j k_j kj(i != j),有 k i k_i ki != k j k_j kj,但有:Hash( k i k_i ki) == Hash( k j k_j kj),即:不同关键字通过相同哈希函数计算出相同的哈希地址,这种现象称为哈希冲突或哈希碰撞

把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”

发生哈希冲突该如何处理呢?

3. 哈希函数

引起哈希冲突的一个原因可能是:哈希函数设计不够合理

哈希函数设计原则

  • 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有 m 个地址时,其值域必须在 0 到 m - 1 之间;
  • 哈希函数计算出来的地址能均匀分布在整个空间中;
  • 哈希函数应该比较简单。

常见哈希函数

  1. 直接定址法(常用)

    取关键字的某个线性函数为散列地址:Hash (Key) = A * Key + B
    优点:简单、均匀
    缺点:需要事先知道关键字的分布情况
    使用场景:适合查找比较小且连续的情况

  2. 除留余数法(常用)

    设散列表中允许的地址数为 m,取一个不大于 m,但最接近或者等于 m 的质数 p 作为除数,按照哈希函数:Hash (Key) = Key % p (p <= m),将关键码转换成哈希地址

  3. 平方取中法(了解)

    假设关键字为 1234,对它平方就是 1522756,抽取中间的 3 位 227 作为哈希地址;
    再比如关键字为 4321,对它平方就是 18671041,抽取中间的 3 位 671(或 710)作为哈希地址;
    平方取中法比较适合:不知道关键字的分布,而位数又不是很大的情况

  4. 折叠法(了解)

    折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这几部分叠加求和,并按照散列表表长,取后几位作为散列地址;
    折叠法适合事先不需要知道关键字的分布,适合关键字位数比较多的情况

  5. 随机数法(了解)

    选择一个随机函数,取关键字的随机函数值为它的哈希地址,即 Hash (Key) = random(Key),其中 random 为随机数函数;
    通常应用于关键字长度不等时采用此法

  6. 数学分析法(了解)

    设有 n 个 d 位数,每一位可能有 r 种不同的符号,这 r 种不同的符号在各位上出现的频率不一定相同,可能在某些位上分布比较均匀,每种符号出现的机会均等,在某些位上分布不均匀,只有某几种符号经常出现。可根据散列表的大小,选择其中各种符号分布均匀的若干位作为散列地址。例如:

    在这里插入图片描述

    假设要存储某家公司员工登记表,如果用手机号作为关键字,那么极有可能前 7 位都是相同的,那么我们可以选择后面的四位作为散列地址,如果这样的抽取工作还容易出现冲突,还可以对抽取出来的数字进行反转(如 1234 改成 4321)、右环移位(如 1234 改成 4123)、左环移位、前两数与后两数叠加(如 1234 改成 12+34=46)等方法;
    数字分析法通常适合处理关键字位数比较多的情况

注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突

4. 哈希冲突解决

解决哈希冲突两种常见的方法是:闭散列开散列

4.1 闭散列

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明哈希表中必然还有空位置,那么可以把 key 存放到冲突位置中的“下一个”空位置中去。那如何寻找下一个空位置呢?

  1. 线性探测

    比如上面的场景:

    在这里插入图片描述

    现在需要插入元素 44,先通过哈希函数计算哈希地址,hashAddr 为 4,因此 44 理论上应该插在该位置,但是该位置已经放了值为 4 的元素,即发生哈希冲突。

    线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止

    • 插入

      • 通过哈希函数获取待插入元素在哈希表中的位置

      • 如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素

        在这里插入图片描述

    • 删除

      采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。比如删除元素 4,如果直接删除掉,44 查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素

      // 哈希表每个空间给个标记
      // EMPTY此位置空, EXIST此位置已经有元素, DELETE元素已经删除
      enum State
      {EMPTY,EXIST,DELETE
      };
      
  2. 线性探测的实现

    // 注意:假如实现的哈希表中元素唯一,即key相同的元素不再进行插入
    // 为了实现简单,此哈希表中我们将比较直接与元素绑定在一起
    template<class K, class V>
    class HashTable
    {struct Elem{pair<K, V> _val;State _state;};public:HashTable(size_t capacity = 3): _ht(capacity), _size(0){for (size_t i = 0; i < capacity; ++i)_ht[i]._state = EMPTY;}bool Insert(const pair<K, V>& val){// 检测哈希表底层空间是否充足// _CheckCapacity();size_t hashAddr = HashFunc(key);// size_t startAddr = hashAddr;while (_ht[hashAddr]._state != EMPTY){if (_ht[hashAddr]._state == EXIST && _ht[hashAddr]._val.first == key)return false;hashAddr++;if (hashAddr == _ht.capacity())hashAddr = 0;/*转一圈也没有找到,注意:动态哈希表,该种情况可以不用考虑,哈希表中元素个数到达一定的数量,哈希冲突概率会增大,需要扩容来降低哈希冲突,因此哈希表中元素是不会存满的if(hashAddr == startAddr)return false;*/}// 插入元素_ht[hashAddr]._state = EXIST;_ht[hashAddr]._val = val;_size++;return true;}int Find(const K& key){size_t hashAddr = HashFunc(key);while (_ht[hashAddr]._state != EMPTY){if (_ht[hashAddr]._state == EXIST && _ht[hashAddr]._val.first == key)return hashAddr;hashAddr++;}return hashAddr;}bool Erase(const K & key){int index = Find(key);if (-1 != index){_ht[index]._state = DELETE;_size++;return true;}return false;}size_t Size()const;bool Empty() const;void Swap(HashTable<K, V, HF>& ht);private:size_t HashFunc(const K& key){return key % _ht.capacity();}private:vector<Elem> _ht;size_t _size;
    };
    

    思考:哈希表什么情况下进行扩容?如何扩容?

    在这里插入图片描述

    void CheckCapacity()
    {if (_size * 10 / _ht.capacity() >= 7){HashTable<K, V, HF> newHt(GetNextPrime(ht.capacity));for (size_t i = 0; i < _ht.capacity(); ++i){if (_ht[i]._state == EXIST)newHt.Insert(_ht[i]._val);}Swap(newHt);}
    }
    

    线性探测优点:实现非常简单;

    线性探测缺点:一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同关键码占据了可利用的空位置,使得寻找某关键码的位置需要多次比较,导致搜索效率降低,如何缓解?

  3. 二次探测

    线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就是挨着往后逐个去找,因此二次探测为了避免该问题,找下一个空位置的方法为: H i H_i Hi = ( H 0 H_0 H0 + i 2 i^2 i2 ) % m。其中:i = 1, 2, 3…, H 0 H_0 H0 是通过散列函数 Hash(x) 对关键码 key 进行计算得到的位置,m 是表的大小

    对于上面案例,如果要插入 44,产生冲突,使用二次探测解决后的情况为:

    在这里插入图片描述

    研究表明:当表的长度为质数且表装载因子 a 不超过 0.5 时,新的表项一定能够插入。而且任何一个位置都不会被探查两次。因此只要表中有一半的空位置,就不会存在表满的问题。在搜索时可以不考虑表装满的情况,但在插入时必须确保表的装载因子 a 不超过 0.5,如果超出必须考虑增容。

因此:闭散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷。

4.2 开散列

  1. 开散列的概念

    开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头节点存储在哈希表中

    个人理解:哈希桶 = 顺序表 + 链表 + 哈希算法;

    在这里插入图片描述

    在这里插入图片描述

    从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素

  2. 开散列实现

    template<class V>
    struct HashBucketNode
    {HashBucketNode(const V& data): _pNext(nullptr), _data(data){}HashBucketNode<V>* _pNext;V _data;
    };// 本文所实现的哈希桶中key是唯一的
    template<class V>
    class HashBucket
    {typedef HashBucketNode<V> Node;typedef Node* PNode;
    public:HashBucket(size_t capacity = 3) : _size(0){_ht.resize(GetNextPrime(capacity), nullptr);}// 哈希桶中的元素不能重复PNode* Insert(const V& data){// 确认是否需要扩容。。。// _CheckCapacity();// 1. 计算元素所在的桶号size_t bucketNo = HashFunc(data);// 2. 检测该元素是否在桶中PNode pCur = _ht[bucketNo];while (pCur){if (pCur->_data == data)return pCur;pCur = pCur->_pNext;}// 3. 插入新元素pCur = new Node(data);pCur->_pNext = _ht[bucketNo];_ht[bucketNo] = pCur;_size++;return pCur;}// 删除哈希桶中为data的元素(data不会重复),返回删除元素的下一个节点PNode* Erase(const V& data){size_t bucketNo = HashFunc(data);PNode pCur = _ht[bucketNo];PNode pPrev = nullptr, pRet = nullptr;while (pCur){if (pCur->_data == data){if (pCur == _ht[bucketNo])_ht[bucketNo] = pCur->_pNext;elsepPrev->_pNext = pCur->_pNext;pRet = pCur->_pNext;delete pCur;_size--;return pRet;}}return nullptr;}PNode* Find(const V& data);size_t Size()const;bool Empty()const;void Clear();bool BucketCount()const;void Swap(HashBucket<V, HF>& ht;~HashBucket();private:size_t HashFunc(const V& data){return data % _ht.capacity();}private:vector<PNode*> _ht;size_t _size; // 哈希表中有效元素的个数
    };
    
  3. 开散列增容

    桶的个数是一定的,随着元素的不断插入。每个桶中元素的个数不断增多,极端情况下,可能会导致一个桶中链表节点非常多,会影响哈希表的性能,因此在一定条件下需要对哈希表进行增容,那该条件怎么确认呢?开散列最好的情况是:每个哈希桶中刚好挂一个节点,再继续插入元素时,每一次都会发生哈希冲突,因此,在元素个数刚好等于桶的个数时,可以给哈希表增容。

    void _CheckCapacity(){size_t bucketCount = BucketCount();if (_size == bucketCount){HashBucket<V, HF> newHt(bucketCount);for (size_t bucketIdx = 0; bucketIdx < bucketCount; ++bucketIdx){PNode pCur = _ht[bucketIdx];while (pCur){// 将该节点从原哈希表中拆出来_ht[bucketIdx] = pCur->_pNext;// 将该节点插入到新哈希表中size_t bucketNo = newHt.HashFunc(pCur->_data);pCur->_pNext = newHt._ht[bucketNo];newHt._ht[bucketNo] = pCur;pCur = _ht[bucketIdx];}}newHt._size = _size;this->Swap(newHt);}}
    
  4. 开散列的思考

    • 只能存储 key 为整型的元素,其他类型怎么解决

      // 哈希函数采用除留余数法,被模的key必须要为整形才可以处理,此处提供将key转化为整形的方法
      // 整形数据不需要转化
      template<class T>
      class DefHashF
      {
      public:size_t operator()(const T& val){return val;}
      };// key为字符串类型,需要将其转化为整形
      class Str2Int
      {
      public:size_t operator()(const string& s){const char* str = s.c_str();unsigned int seed = 131; // 31 131 1313 13131 131313unsigned int hash = 0;while (*str){hash = hash * seed + (*str++);}return (hash & 0x7FFFFFFF);}
      };// 为了实现简单,此哈希表中我们将比较直接与元素绑定在一起
      template<class V, class HF>
      class HashBucket
      {// ……
      private:size_t HashFunc(const V& data){return HF()(data.first) % _ht.capacity();}
      };
      
    • 除留余数法,最好模一个素数,如何每次快速取一个类似两倍关系的素数?

      size_t GetNextPrime(size_t prime)
      {const int PRIMECOUNT = 28;static const size_t primeList[PRIMECOUNT] ={53ul, 97ul, 193ul, 389ul, 769ul,1543ul, 3079ul, 6151ul, 12289ul, 24593ul,49157ul, 98317ul, 196613ul, 393241ul, 786433ul,1572869ul, 3145739ul, 6291469ul, 12582917ul,25165843ul,50331653ul, 100663319ul, 201326611ul, 402653189ul,805306457ul,1610612741ul, 3221225473ul, 4294967291ul};size_t i = 0;for (; i < PRIMECOUNT; ++i){if (primeList[i] > prime)return primeList[i];}return primeList[i];
      }
      
  5. 开散列与闭散列比较

    应用链地址法处理溢出,需要增设链接指针,似乎增加了存储开销。事实上:由于开地址法必须保持大量的空闲空间以确保搜索效率,如二次探测法要求装载因子 a <= 0.7,而表项所占空间又比指针大得多,所以使用链地址法反而比开地址法节省存储空间


END
http://www.ritt.cn/news/14618.html

相关文章:

  • 专业app网站建设哪家好今日头条新闻发布
  • 网站开发要求描述全国培训机构排名前十
  • 青岛网站建设青岛新思维百度关键词规划师入口
  • 广州越秀最新通知关键词排名优化是什么意思
  • 深圳微商城网站制作报价他达拉非片
  • 女和女做网站免费推广网站大全下载
  • 网站建设流程教程长沙市云网站建设
  • 自己可以模拟装修appseo工资待遇 seo工资多少
  • 河南郑州汽车网网站建设域名服务器查询
  • 展厅设计说明200字武汉网络优化知名乐云seo
  • 移动端网站开发项目报告海外营销
  • 免费查找企业信息的网站有哪些可以推广的平台
  • 建设部职称网站三个关键词介绍自己
  • 青岛做网站好的公司外贸建站优化
  • 建设大型网站需要什么硬件外贸推广优化公司
  • 德阳网站建设求职简历seo在线优化技术
  • 福田做网站2024免费网站推广大全
  • 网站建设企业资质网络公司的推广
  • 群晖 做网站seo网站优化排名
  • 微信网站公众平台惠州seo按天计费
  • 企业官方网站应该怎么样建设seort什么意思
  • 西安网站推广seo优化的网站
  • 服务器上的wordpressseo快速排名软件价格
  • 西安网站建设设计的好公司排名郴州seo网络优化
  • 做网站的素材都在哪里下载济南网络推广公司电话
  • 临沂做商城网站建设seo排名技巧
  • 科技网站建设分析网络推广外包怎么接单
  • 北京公司网站建设价格通州优化公司
  • 店铺邮箱怎么注册宁波seo资源
  • 中小企业网站功能设计一个公司网站多少钱