当前位置: 首页 > news >正文

宝鸡英文网站建设企业查询免费

宝鸡英文网站建设,企业查询免费,湖北做网站教程哪家好,顺德网站建设价格文章目录 矩阵方程有解判定定理线性方程组有解判定特化:齐次线性方程组有解判定推广:矩阵方程 A X B AXB AXB有解判定证明推论 矩阵方程有解判定定理 线性方程组有解判定 线性方程组 A x b A\bold{x}\bold{b} Axb有解的充分必要条件是它的系数矩阵A和增广矩阵 ( A , b ) (A,…

文章目录

矩阵方程有解判定定理

线性方程组有解判定

  • 线性方程组 A x = b A\bold{x}=\bold{b} Ax=b有解的充分必要条件是它的系数矩阵A和增广矩阵 ( A , b ) (A,\bold{b}) (A,b)具有相同的秩 R ( A ) = R ( A , b ) R(A)=R(A,\bold{b}) R(A)=R(A,b),记 r = R ( A ) = R ( A , b ) r=R(A)=R(A,\bold{b}) r=R(A)=R(A,b):

    • r = n r=n r=n有方程组有唯一解
    • r < n r<{n} r<n方程组有多解
  • 对于非齐次线性方程,需要计算 R ( A ) , R ( A , b ) R(A),R(A,\bold{b}) R(A),R(A,b)

  • 对于齐次线性方程只需要计算 R ( A ) R(A) R(A)

特化:齐次线性方程组有解判定

  • 这是线性方程组有解的特例,可以将定理进一步简化

  • 齐次线性方程组 A x = 0 A\bold{x}=\bold{0} Ax=0齐次方程组的情况可以理解为 b \bold{b} b中元素全为0

  • 容易知道 A x = 0 A\bold{x}=\bold{0} Ax=0总有 R ( A ) = R ( A ‾ ) = r R(A)=R(\overline{A})=r R(A)=R(A)=r,因此齐次线性方程组总是有解;

    • 我们只需要计算系数矩阵 A A A的秩 R ( A ) R(A) R(A)即可得到 r r r
    • r = n r=n r=n则方程组有唯一解,并且是零解
    • r < n r<n r<n方程组有非零解
  • 齐次线性方程组有解判定定理:齐次线性方程组 A x = 0 A\bold{x}=\bold{0} Ax=0有解的充要条件是 R ( A ) ⩽ n R(A)\leqslant{n} R(A)n;

    • 有零解(唯一解)的充要条件是 R ( A ) = n R(A)=n R(A)=n
    • 有非零解(多解)的充要条件是 R ( A ) < n R(A)<n R(A)<n;

推广:矩阵方程 A X = B AX=B AX=B有解判定

  • 这里 B B B是常数项矩阵(不再是系数矩阵的增广矩阵)
  • 定理:矩阵方程 A X = B AX=B AX=B有解的充要条件是 R ( A ) = R ( A , B ) R(A)=R(A,B) R(A)=R(A,B)
    • 注意这里 X , B X,B X,B不一定是向量,可能是多行多列的矩阵

    • 参考同济线代v6@p76@定理6

证明

  • A , X , B A,X,B A,X,B分别为 m × n m\times{n} m×n, n × l n\times{l} n×l, m × l m\times{l} m×l的矩阵

  • 对X和B按列分块:

    • X X X= ( x 1 , x 2 , ⋯ x l ) (\bold{x}_1,\bold{x}_2,\cdots \bold{x}_l) (x1,x2,xl),
    • B B B= ( b 1 , b 2 , ⋯ b l ) (\bold{b}_1,\bold{b}_2,\cdots \bold{b}_l) (b1,b2,bl)
  • 矩阵方程 A X = B AX=B AX=B等价 l l l向量方程(线性方程组)

  • A X = A ( x 1 , x 2 , ⋯ x l ) AX=A(\bold{x}_1,\bold{x}_2,\cdots \bold{x}_l) AX=A(x1,x2,xl)= ( A x 1 , A x 2 , ⋯ A x l ) (A\bold{x}_1,A\bold{x}_2,\cdots A\bold{x}_l) (Ax1,Ax2,Axl)

  • 所有 A X = B AX=B AX=B等价于 ( A x 1 , A x 2 , ⋯ A x l ) (A\bold{x}_1,A\bold{x}_2,\cdots A\bold{x}_l) (Ax1,Ax2,Axl)= ( b 1 , b 2 , ⋯ b l ) (\bold{b}_1,\bold{b}_2,\cdots \bold{b}_l) (b1,b2,bl)

    • 又等价于 A x i = b i ( i = 1 , 2 , ⋯ , l ) A\bold{x}_i=\bold{b}_i(i=1,2,\cdots,l) Axi=bi(i=1,2,,l) l l l个线性方程组
    • 这些线性方程的共同点是有相同的系数矩阵 A A A,这意味着这 l l l个线性方程组以及原矩阵方程的系数矩阵的秩都是相等的,这个结论很重要
    • 而位置数矩阵和常数项矩阵又是相对独立的
  • R ( A ) = r R(A)=r R(A)=r,且 A A A行阶梯形矩阵为 A ~ \widetilde{A} A ,则 A ~ \widetilde{A} A r r r个非零行,且 A ~ \widetilde{A} A 的后 m − r m-r mr行为全零行

  • ( A , B ) (A,B) (A,B)= ( A , b 1 , b 2 , ⋯ b l ) (A,\bold{b}_1,\bold{b}_2,\cdots \bold{b}_l) (A,b1,b2,bl) ∼ r \overset{r}{\sim} r ( A ~ , b 1 ~ , ⋯ , b l ~ ) {(\widetilde{A},\widetilde{\bold{b}_1},\cdots,\widetilde{\bold{b}_l})} (A ,b1 ,,bl )

    • 其中 A ~ \widetilde{A} A A A A行阶梯形矩阵
    • 而向量 b 1 ~ , ⋯ , b l ~ \widetilde{\bold{b}_1},\cdots,\widetilde{\bold{b}_l} b1 ,,bl b 1 , b 2 , ⋯ b l \bold{b}_1,\bold{b}_2,\cdots \bold{b}_l b1,b2,bl A ∼ r A ~ A\overset{r}{\sim}\widetilde{A} ArA 执行相同的行变换后的结果,即 b i ~ \widetilde{\bold{b}_i} bi 并不表示某个行阶梯形矩阵
  • 将等价的第 i i i个线性方程组的增广矩阵初等行变换为行阶梯形矩阵: ( A , b i ) (A,\bold{b}_i) (A,bi) ∼ r \overset{r}{\sim} r ( A ~ , b i ~ ) {(\widetilde{A},\widetilde{\bold{b}_i})} (A ,bi ), ( i = 1 , 2 , ⋯ , l ) (i=1,2,\cdots,l) (i=1,2,,l)

  • A X = B AX=B AX=B有解 ⇔ \Leftrightarrow A x i = b i {A\bold{x}_i=\bold{b}_i} Axi=bi ( i = 1 , 2 , ⋯ , l ) (i=1,2,\cdots,l) (i=1,2,,l)有解

    • ⇔ \Leftrightarrow R ( A , b i ) {R(A,\bold{b}_i)} R(A,bi)= R ( A ) = r R(A)=r R(A)=r, ( i = 1 , 2 , ⋯ , l ) (i=1,2,\cdots,l) (i=1,2,,l)
    • ⇔ \Leftrightarrow b i ~ {\widetilde{\bold{b}_i}} bi 的后 m − r m-r mr个分量(元)全为0 ( i = 1 , 2 , ⋯ , l ) (i=1,2,\cdots,l) (i=1,2,,l)
      • 因为,若后 m − r m-r mr个元中存在非零元,会导致 R ( A , b i ) > R ( A ) R(A,\bold{b}_i)>R(A) R(A,bi)>R(A),导致 A x i = b i {A\bold{x}_i=\bold{b}_i} Axi=bi无解
      • 而其前 r r r个元的取值情况不会影响 R ( A , b i ) {R(A,\bold{b}_i)} R(A,bi)= R ( A ) R(A) R(A)的成立,我们不关心
    • ⇔ \Leftrightarrow 矩阵 ( b 1 ~ , ⋯ , b l ~ ) (\widetilde{\bold{b}_1},\cdots,\widetilde{\bold{b}_l}) (b1 ,,bl )的后 m − r m-r mr行全为0;
    • ⇔ \Leftrightarrow 行阶梯形矩阵 D ~ \widetilde{D} D = ( A ~ , b 1 ~ , ⋯ , b l ~ ) (\widetilde{A},\widetilde{\bold{b}_1},\cdots,\widetilde{\bold{b}_l}) (A ,b1 ,,bl )的后 m − r m-r mr行全为0
    • ⇔ \Leftrightarrow R ( D ~ ) ⩽ m − ( m − r ) = r R(\widetilde{D})\leqslant{m-(m-r)=r} R(D )m(mr)=r,又因为 D ~ \widetilde{D} D 包含了 A ~ \widetilde{A} A ,所以 R ( A ~ ) = r ⩽ R ( D ~ ) R(\widetilde{A})=r\leqslant{R(\widetilde{D})} R(A )=rR(D )
    • ⇔ \Leftrightarrow R ( D ~ ) = r R(\widetilde{D})=r R(D )=r
    • ⇔ R ( A , B ) = R ( A ) \Leftrightarrow{R(A,B)=R(A)} R(A,B)=R(A)
  • 因此,如果 A X = B AX=B AX=B有解,则 R ( A , B ) = R ( A ) R(A,B)=R(A) R(A,B)=R(A)

推论

  • A X = B AX=B AX=B有解,则 R ( B ) ⩽ R ( A , B ) = R ( A ) R(B)\leqslant{R(A,B)}=R(A) R(B)R(A,B)=R(A),所以 R ( B ) ⩽ R ( A ) R(B)\leqslant{R(A)} R(B)R(A),即常数项矩阵的秩小于系数矩阵的秩
  • A X = B AX=B AX=B两边同时取转置运算,有 X T A T = B T X^TA^T=B^T XTAT=BT,同理有 R ( B T ) ⩽ R ( X T ) R(B^T)\leqslant R(X^T) R(BT)R(XT),即 R ( B ) ⩽ R ( X ) R(B)\leqslant{R(X)} R(B)R(X)
  • 综上, R ( B ) ⩽ min ⁡ ( R ( A ) , R ( X ) ) R(B)\leqslant{\min(R(A),R(X))} R(B)min(R(A),R(X))
http://www.ritt.cn/news/16795.html

相关文章:

  • 个人养老金保险查询重庆seo整站优化报价
  • 网站后台路径百度seo引流怎么做
  • jsp做的网站带数据库指数查询
  • 企业型商务网站制作百度网络营销的概念
  • 企业网站设计有哪些新功能独立站seo优化
  • 小说网站怎么做原创网站免费客服系统
  • wordpress自定义表情杭州网站优化多少钱
  • 武汉 外贸网站建设网站外链分析工具
  • 浙江建设职业技术学院oa网站seo网站优化推广怎么样
  • 各大搜索引擎网站登录入口seo关键词使用
  • 做家务的男人网站深圳网络推广专员
  • 商城网站租服务器安全不国外b站浏览器
  • 做百度收录的网站推广联系方式
  • 学校网站做链接软文模板app
  • 深圳自建网站网站优化方案怎么写
  • 怎么做网站播放器微信朋友圈广告投放代理
  • icp备案和icp许可证区别武汉网站运营专业乐云seo
  • 肇庆微网站友情网站
  • java教程宁波seo排名优化价格
  • 网站建设多少钱一平米免费sem工具
  • 网站是用什么软件做的百度代理合作平台
  • 用html做网站代码百度竞价排名广告定价
  • 网站的360快照怎么做软件开发网站
  • 没有网站的域名企业培训课程表
  • windows2012做网站网络营销的整体概念
  • 公司电商网站开发合同站长工具无内鬼放心开车禁止收费
  • 动态ip怎么建设网站免费建网站的平台
  • 小兽wordpress阳泉seo
  • 给六人游做网站开发的app地推接单平台有哪些
  • 国企网站建设人工智能培训