当前位置: 首页 > news >正文

你有网站 我做房东 只收佣金的网百度推广关键词怎么设置好

你有网站 我做房东 只收佣金的网,百度推广关键词怎么设置好,服务推广软文,网页怎么制作超链接NeRF:Representing Scene as Neural Radiance Fields for View Synthesis 笔记 摘要 实现了一个任意视角视图生成算法:输入稀疏的场景图像,通过优化连续的Volumetric场景函数实现;用全连接深度网络表达场景,输入是一个连续的5维…

NeRF:Representing Scene as Neural Radiance Fields for View Synthesis 笔记

摘要

实现了一个任意视角视图生成算法:输入稀疏的场景图像,通过优化连续的Volumetric场景函数实现;用全连接深度网络表达场景,输入是一个连续的5维坐标,3D坐标+2D角度(航向、俯仰角),输出Volume density和依赖于视图的emitted radiance,查询5维坐标并用经典的Volume Rendering把输出的颜色与强度投影到图像。

介绍

a. march camera rays,我理解为从焦点投射射线到场景,获取3D坐标点。
b. 用3D点 x \bold{x} x与对应的2D角度(用单位向量 d \bold{d} d)输入,输出颜色 c \bold{c} c和强度 σ \sigma σ
c. 合成图像。

Neural Radiance Field场景表达

F θ : ( x , d ) → ( c , σ ) F_{\theta}:(\bold{x},\bold{d})\rarr(\bold{c},\sigma) Fθ:(x,d)(c,σ)
输出 σ \sigma σ只与输入位置坐标 x \bold{x} x有关, c \bold{c} c则与 x \bold{x} x d \bold{d} d有关。

网络结构,输入 x \bold{x} x的8层全连接层,均为256通道,各层带ReLU激活,输出 σ \sigma σ、256维特征,此特征再与 d \bold{d} d聚合,输入一层带ReLU的全连接层,输出 c \bold{c} c

Volume Rendering

位置坐标 x \bold{x} x表达为相机射线 r \bold{r} r r ( t ) = o + t d \bold{r}(t)=\bold{o}+t\bold{d} r(t)=o+td,t是从焦点 o o o出发的长度,积分上下界是远端、近端。
C ( r ) = ∫ t n t f T ( t ) σ ( r ( t ) ) c ( r , d ) d t T ( t ) = e x p ( − ∫ t n t σ ( r ( s ) ) d s ) C(\bold{r})=\int_{t_{n}}^{t_{f}} T(t)\sigma(\bold{r}(t))\bold{c}(\bold{r},d)dt\\T(t)=exp(-\int_{t_{n}}^t\sigma(\bold{r}(s))ds) C(r)=tntfT(t)σ(r(t))c(r,d)dtT(t)=exp(tntσ(r(s))ds)

T ( t ) T(t) T(t)的含义从 t n t_n tn t t t累积的transmittance,“the accumulated transmittance along the ray”,是射线从 t n t_n tn t t t未遇到其他粒子的概率。
求该积分的数值方法,Deterministic quadrature,笔者初步理解是一种数值计算方法,离散化近似:将区间分为N段,从每一段随机取样。
t i ∼ U [ t n + i − 1 N ( t f − t n ) , t n + i N ( t f − t n ) ] t_i\sim U[t_n+\frac{i-1}{N}(t_f-t_n),t_n+\frac{i}{N}(t_f-t_n)] tiU[tn+Ni1(tftn),tn+Ni(tftn)]
参考Volume Rendering综述,
C ^ ( r ) = ∑ i = 1 N T i ( 1 − e x p ( − σ i δ i ) ) c i T i = e x p ( − ∑ j = 1 i − 1 σ j δ j ) δ j = t j + 1 − t j \hat C(\bold{r})=\sum_{i=1}^NT_i(1-exp(-\sigma_i\delta_i))\bold{c}_i\\ T_i=exp(-\sum_{j=1}^{i-1}\sigma_j\delta_j)\\ \delta_j=t_{j+1}-t_j C^(r)=i=1NTi(1exp(σiδi))ciTi=exp(j=1i1σjδj)δj=tj+1tj

两项技术改进

只有上述设计不能达到SOTA,为此添加了两项重要改进,其中第二项是为了高效地实现第一项。

  1. 位置编码

    直接输入上述5维做渲染,在场景中颜色和几何的高频变化的条件下表现较差,有参考证明深度网络偏向于学习低频函数,并发现在输入网络前用高频函数将数据映射到更高维,网络能更好拟合含有高频变化的数据。5维输入的各个元素 p p p被映射为长为2L的向量
    γ ( p ) = ( s i n ( 2 0 π p ) , c o s ( 2 0 π p ) , . . . , s i n ( 2 L − 1 π p ) , c o s ( 2 L − 1 π p ) ) \gamma(p)=(sin(2^0{\pi}p),cos(2^0{\pi}p),...,sin(2^{L-1}{\pi}p),cos(2^{L-1}{\pi}p)) γ(p)=(sin(20πp),cos(20πp),...,sin(2L1πp),cos(2L1πp))
    其中,位置元素L=10,方向元素L=4;各维元素均归一化到 [ − 1 , 1 ] [-1,1] [1,1]
    Transformer有相似处理,但它的目的是给序列提供位置标签,因为Transformer结构不能标记顺序;NERF中的位置编码则是为了将输入升维以使得它的MLP能拟合更高频函数;从投影重建蛋白质3D结构的模型方法也使用了该思路。

  2. 多层采样
    采用两个网络,一个粗略,一个精细。首先用第一个网络生成颜色,每条射线输入 N c N_c Nc个位置,然后用其结果引导重新采样,使得 N f N_f Nf个采样点集中到体元附近,提高有效信息位置的样本权重,使用两次的采样来渲染。

http://www.ritt.cn/news/18688.html

相关文章:

  • 做ar的网站推销产品的万能句子
  • 东莞莞城网站建设b站视频推广网站400
  • 东莞做网站it s企业网站设计服务
  • 中文编程做网站谷歌浏览器 官网下载
  • 工程承包网站有哪些深圳网络推广培训机构
  • 成都网站建设四川冠辰科技百度指数是免费的吗
  • 企业简介 网站建设百度推广中心
  • 自己做的网站地址手机怎么打不开seo推广优化多少钱
  • 网站建设扁平化网站建设公司大全
  • 四川专做餐饮的网站东莞互联网推广
  • 网站的付款链接怎么做的百度竞价有点击无转化
  • 网站名称搜索不到泉州关键词排名工具
  • 像优酷平台网站是怎么做的最新网站查询工具
  • 做百度网站每年的费用多少钱南宁seo专员
  • 如何免费建站企业网站建设方案
  • 网站设计的总结网页设计大作业
  • 网站内页收录高级seo培训
  • 政府网站群建设关键词在线查询
  • 增加网站访客排名查询
  • 官方网站建设要点seo优化评论
  • 可以免费做简历的网站南京关键词优化服务
  • 合肥做公司网站公司seowhy官网
  • 模板网站与定制网站的价格推广软文案例
  • 模版网站和语言网站网站seo优化外包顾问
  • 怎样建设一个英语网站如何网上销售自己的产品
  • 山西天镇建站哪家好技术培训学校机构
  • 门窗企业网站建设青岛seo百科
  • 公司关于网站设计公司的简介武汉大学人民医院怎么样
  • 懂得做网站还可以做什么兼职百度百家号注册
  • 做高档衣服的网站站长工具下载app