当前位置: 首页 > news >正文

网站建设 运维 管理包括哪些网络营销成功的案例分析

网站建设 运维 管理包括哪些,网络营销成功的案例分析,专业网站建设详细方案,wordpress检测登录ipopenmvg是一个轻便的可以逐步运行的SfM开源库,它同时实现了增量式和全局式两种算法。 说明文档地址:https://openmvg.readthedocs.io/en/latest/ github主页地址:https://github.com/openMVG/openMVG 1 编译安装 openmvg的安装比较简单&…

  openmvg是一个轻便的可以逐步运行的SfM开源库,它同时实现了增量式和全局式两种算法。

说明文档地址:https://openmvg.readthedocs.io/en/latest/
github主页地址:https://github.com/openMVG/openMVG
在这里插入图片描述

  

1 编译安装

  openmvg的安装比较简单,首先是安装依赖:

$ sudo apt‐get install libxxf86vm1 libxxf86vm‐dev libpng‐dev libjpeg‐dev libtiff‐dev libxi‐dev libxrandr‐dev graphviz

  然后克隆openmvg源码:

$ git clone ‐‐recursive https://github.com/openMVG/openMVG.git

  最后,使用cmake编译与安装:

$ mkdir openMVG_Build && cd openMVG_Build
$ cmake ‐DCMAKE_BUILD_TYPE=RELEASE ../openMVG/src/
$ cmake ‐‐build . ‐‐target install

  

2 运行命令

  openmvg的官方使用说明里有说如何运行SfM,包括使用脚本一行命令运行(只有在图像exif带内参信息的时候才能使用),以及如何分步运行,可以参考这里。但是这里需要说明的是,openmvg的代码后面有修改过,而使用文档却并没有完全更新过来。所以,如果只是按照使用文档来运行,或者是很多别的教程(可能只是直接抄官方文档或者比较老的),很可能会遇到错误(很多示例并不能跑)。在遇到一些不知名的报错以及踩过不少坑之后,我把可以运行出来的命令记录下来。这里,最好只改变输出文件夹的根路径,可以放在任何你想放的路径下,但是一些输出的名字这些,最好不要修改,容易出错。另一个需要注意的问题是,需要明确图像有无exif信息可以读取到相机内参,比如焦距这些,如果没有的话,那么相机内参还需要在第一步的时候就进行输入,下面分别进行介绍。
  

2.1 图像exif带相机内参信息

# 首先给一些路径进行定义,方便下面描述,使用时使用自己的实际目录进行替换即可
# DIR_DATA: 图像数据存放路径
# DIR_OUTPUT: 存放输出结果的路径
# DIR_OM: 存放openmvg源码的路径
1. 初始化图像列表
openMVG_main_SfMInit_ImageListing -d DIR_OM/openMVG/src/openMVG/exif/sensor_width_database/sensor_width_camera_database.txt -i DIR_DATA -o DIR_OUTPUT
2. 计算特征
openMVG_main_ComputeFeatures -i DIR_OUTPUT/sfm_data.json -o DIR_OUTPUT
3. 生成图像对
openMVG_main_PairGenerator -i DIR_OUTPUT/sfm_data.json -o DIR_OUTPUT/imgpairs.bin
4. 图像匹配
openMVG_main_ComputeMatches -i DIR_OUTPUT/sfm_data.json -p DIR_OUTPUT/imgpairs.bin -o DIR_OUTPUT/matches.bin
5. 错误匹配点对滤除
openMVG_main_GeometricFilter -i DIR_OUTPUT/sfm_data.json -m DIR_OUTPUT/matches.bin -g f -o DIR_OUTPUT/matches.f.bin
6.1. 全局式SfM
openMVG_main_SfM -s GLOBAL -i DIR_OUTPUT/sfm_data.json -m DIR_OUTPUT/ -o DIR_OUTPUT/out_Global_Reconstruction
6.2. 增量式SfM
openMVG_main_SfM -s INCREMENTAL -i DIR_OUTPUT/sfm_data.json -m DIR_OUTPUT/ -o DIR_OUTPUT/out_Incremental_Reconstruction
7.1. 生成颜色(全局式)
openMVG_main_ComputeSfM_DataColor -i DIR_OUTPUT/out_Global_Reconstruction/sfm_data.bin -o DIR_OUTPUT/out_Global_Reconstruction/sfm_data_colorized.ply
7.2. 生成颜色(增量式)
openMVG_main_ComputeSfM_DataColor -i DIR_OUTPUT/out_Incremental_Reconstruction/sfm_data.bin -o DIR_OUTPUT/out_Incremental_Reconstruction/sfm_data_colorized.ply

  下面是实验数据与最终生成的结果:
在这里插入图片描述
  
在这里插入图片描述
  
  其中,存放最终输出结果的文件夹out_Global_Reconstruction/out_Incremental_Reconstruction下应该会有如下内容:
在这里插入图片描述
  ply文件是点云数据,可以使用cloudcompare或者meshlab可视化查看和编辑,上面的结果图就是用cloudcompare打开的sfm_data_colorized.ply文件。
  

2.2 参数指定输入内参信息

  要输入内参信息,只需在第一步的时候进行修改即可,其他步骤与2.1一致。手动输入内参k的方式是增加-k参数:

1. 初始化图像列表
openMVG_main_SfMInit_ImageListing -d DIR_OM/openMVG/src/openMVG/exif/sensor_width_database/sensor_width_camera_database.txt -i DIR_DATA -o DIR_OUTPUT -k "6432;0;3000;0;6455;2000;0;0;1"

  其中-k参数是由双引号界定由分号分隔的九个值,也就是内参矩阵K,按行主序排列,依次为:

"fx;0;cx;0;fy;cy;0;0;1"

  下面是实验数据与最终生成的结果:
在这里插入图片描述
  
在这里插入图片描述

http://www.ritt.cn/news/18980.html

相关文章:

  • 沈阳京科医院宁波seo网站排名优化公司
  • 网站开源程序企业推广软文范文
  • 网站里可以增加网址吗比百度还强大的搜索引擎
  • 哪个网站做公司业务广告效果好百度指数怎么算
  • 网站建设课设报告百度怎么打广告
  • 网站制作动态转静态怎么做北京网络推广
  • 网站建设 个人宁波seo教程推广平台
  • 李洋网络做网站2023年度最火关键词
  • 哪里有做网站企业个人博客网页制作
  • 政务网站无障碍建设淘宝直通车
  • 有专业做网站优化的吗今日冯站长之家
  • 马鞍山网站开发流程杭州百度推广优化排名
  • 网站建设制作首页流程线上营销的方式
  • 杭州网站推广怎样做代做百度关键词排名
  • wap网站做视频直播网站注册查询
  • 宝塔建站网址网站seo优化心得
  • 个人网站做淘宝客福州网站seo优化公司
  • 韩国网站naver官网友情链接有用吗
  • 邯郸有没有专门做写字楼的网站一个新品牌如何推广
  • 更改网站名字焦作seo公司
  • 网站内容管理后台系统怎么做友情链接怎么做
  • 网站优化图片目前最新的营销方式有哪些
  • 建设网站 注册与登陆青岛网站推广公司排名
  • 深圳做网站的好公司win7优化大师免安装版
  • 家具网站开发设计论文设计网站logo
  • 公司做网站都咨询哪些问题企业软文营销发布平台
  • 做个卖车票的网站怎么做免费跨国浏览器
  • 做网站赚钱的点在哪里推广产品吸引人的句子
  • mac docker wordpress外贸seo
  • 网站建设类公司百度推广页面投放