当前位置: 首页 > news >正文

重庆企业网站推广流程抖音搜索seo排名优化

重庆企业网站推广流程,抖音搜索seo排名优化,上海做b2b网站公司,网站制作软件排名准备工作 开通了接收消息权限的飞书机器人,例如我希望用户跟飞书机器人私聊,就需要开通这个权限:读取用户发给机器人的单聊消息 im:message.p2p_msg:readonly准备好飞书机器人的API key 和Secretdeepseek-v3的api keysecret:http…

准备工作

  1. 开通了接收消息权限的飞书机器人,例如我希望用户跟飞书机器人私聊,就需要开通这个权限:读取用户发给机器人的单聊消息 im:message.p2p_msg:readonly
  2. 准备好飞书机器人的API key 和Secret
  3. deepseek-v3的api key+secret:https://platform.deepseek.com/api_keys 这里获取,一开始有10元的免费额度,趁能充多充点,经常不让充值。
  4. 自己部署一下dify,推荐使用docker-compose方式,这个有很多教程就不赘述了

飞书机器人通过长连接获取用户私聊发的消息

我们使用长连接的方式接收用户消息,需要在飞书开发者后台中配置一下应用,见
配置回调订阅方式
代码如下:

import(larkevent "github.com/larksuite/oapi-sdk-go/v3/event""github.com/larksuite/oapi-sdk-go/v3/event/dispatcher""github.com/larksuite/oapi-sdk-go/v3/service/auth/v3"larkim "github.com/larksuite/oapi-sdk-go/v3/service/im/v1"larkws "github.com/larksuite/oapi-sdk-go/v3/ws"
)
var sent map[string]struct{} // 这里简单去个重 实际使用要自己再写去重部分
// 飞书消息过来Content字段值是{\"text\":\"早上好~\"}这样的,需要再解析一下
type Text struct {Text string `json:"text"`
}
// 处理接收到用户消息的事件
func callback() {sent = make(map[string]struct{})// 注册事件回调,OnP2MessageReceiveV1 为接收消息 v2.0;OnCustomizedEvent 内的 message 为接收消息 v1.0。NewEventDispatcher()里的两个参数都填空字符串eventHandler := dispatcher.NewEventDispatcher("", "").OnP2MessageReceiveV1(func(ctx context.Context, event *larkim.P2MessageReceiveV1) error {// messageid简单去重if _, ok := sent[*event.Event.Message.MessageId]; ok {return nil} else {sent[*event.Event.Message.MessageId] = struct{}{}}fmt.Printf("[ OnP2MessageReceiveV1 access ], data: %s\n", larkcore.Prettify(event))fmt.Println(event.Event.Message.Content) // content中就是用户发过来的消息内容var text Textjson.Unmarshal([]byte(*event.Event.Message.Content), &text)fmt.Println(text.Text)// 这里可以把用户输入发给deepseek或者dify并接收其响应,具体实现后面讲//resp, e := deepseek.CallDeepSeekAPI(text.Text)//if e != nil {//	return e//}resp := dify.ChatMessages(text.Text)fmt.Println(resp)// 这里组织飞书机器人发送消息的content格式,跟接收到消息的一样,也是{\"text\":\"say something\"}var contentStruct struct {Text string `json:"text"`}contentStruct.Text = respcontent, _ := json.Marshal(contentStruct)// 这个messages是机器人发送消息函数,见下方messages(getTernantAccessToken(), *event.Event.Sender.SenderId.OpenId, *event.Event.Message.MessageType, string(content))return nil}).//im:message.p2p_msg:readonly 这个先不用管OnCustomizedEvent("", func(ctx context.Context, event *larkevent.EventReq) error {fmt.Printf("[ OnCustomizedEvent access ], type: message, data: %s\n", string(event.Body))return nil})// 创建Clientcli := larkws.NewClient(AppID, AppSecret,larkws.WithEventHandler(eventHandler),larkws.WithLogLevel(larkcore.LogLevelDebug),)// 启动客户端 保持一个长链接err := cli.Start(context.Background())if err != nil {panic(err)}
}//发送消息
func messages(token, receiveID, msgType, content string) {// 创建 Clientclient := lark.NewClient(AppID, AppSecret)// 创建请求对象receiveIDType := "open_id"if strings.HasPrefix(receiveID, "oc") { // 这里我简单区分了一下群聊和个人receiveIDType = "chat_id"}req := larkim.NewCreateMessageReqBuilder().ReceiveIdType(receiveIDType).Body(larkim.NewCreateMessageReqBodyBuilder().ReceiveId(receiveID).MsgType(msgType).Content(content).Build()).Build()// 发起请求resp, err := client.Im.Message.Create(context.Background(), req, larkcore.WithTenantAccessToken(token))// 处理错误if err != nil {fmt.Println(err)return}// 服务端错误处理if !resp.Success() {fmt.Println(resp.Code, resp.Msg, resp.RequestId())return}// 业务处理//fmt.Println(larkcore.Prettify(resp))fmt.Println(string(resp.RawBody))
}

tips: 获取的用户消息长这样:

{EventV2Base: {Schema: "2.0",Header: {EventID: "xx",EventType: "im.message.receive_v1",AppID: "xx",TenantKey: "xx",CreateTime: "1738892348642",Token: ""}},EventReq: {Body: <binary> len 672,RequestURI: ""},Event: {Sender: {SenderId: {UserId: "xx",OpenId: "xx",UnionId: "xx"},SenderType: "user",TenantKey: "xx"},Message: {MessageId: "xx",CreateTime: "1738892348363",UpdateTime: "1738892348363",ChatId: "xx",ChatType: "p2p",MessageType: "text",Content: "{\"text\":\"早上好~\"}"}}
}

接下来就是实现调用deepseek或dify的api的逻辑了

Deepseek-v3 API调用代码

package deepseekimport ("bytes""encoding/json""fmt""io""net/http""net/http/httputil"
)
var (// DeepSeek-R1 API 的配置DeepSeekAPIURL = "https://api.deepseek.com/chat/completions" // 直接用这个就行DeepSeekAPIKey = "你的key"
)
// DeepSeek-R1 API 请求数据结构
type DeepSeekRequest struct {Model    string        `json:"model"`Messages []RoleContent `json:"messages"`Stream   bool          `json:"stream"`
}
type RoleContent struct {Role    string `json:"role"`Content string `json:"content"`
}// DeepSeek-R1 API 响应数据结构
type DeepSeekResponse struct {Choices []struct {Message struct {Content string `json:"content"`} `json:"message"`} `json:"choices"`
}// 调用 DeepSeek-R1 API
func CallDeepSeekAPI(msg string) (string, error) {requestBody := DeepSeekRequest{Model: "deepseek-chat",Messages: []RoleContent{{Role: "system", Content: "You are a helpful assistant."}, // 这里可以自行修改{Role: "user", Content: msg}, // msg就是用户发的消息},Stream: false, // 这里先不用流式输出}requestBytes, err := json.Marshal(requestBody)if err != nil {return "", err}req, err := http.NewRequest("POST", DeepSeekAPIURL, bytes.NewBuffer(requestBytes))if err != nil {return "", err}req.Header.Set("Authorization", "Bearer "+DeepSeekAPIKey)req.Header.Set("Content-Type", "application/json")// 这里我dump了一下请求看发的是否正确 可以删掉dump, _ := httputil.DumpRequest(req, true)fmt.Println(string(dump))// 发请求client := &http.Client{}resp, err := client.Do(req)if err != nil {return "", err}defer resp.Body.Close()body, err := io.ReadAll(resp.Body)if err != nil {return "", err}// 解析响应var deepSeekResponse DeepSeekResponseif err := json.Unmarshal(body, &deepSeekResponse); err != nil {return "", err}// 拿content返回if len(deepSeekResponse.Choices) > 0 {return deepSeekResponse.Choices[0].Message.Content, nil}return "", fmt.Errorf("no response from DeepSeek API")
}

Dify api调用方法

如何在dify中接入大模型并制作一个问答机器人参考:https://docs.dify.ai/zh-hans/guides/application-orchestrate/conversation-application
点击【发布】之后,去【访问api】页面,右上角有一个在这里插入图片描述
点击这个API密钥保存下来

调用代码如下:

package difyimport ("bytes""encoding/json""fmt""io""log""net/http""net/http/httputil""strconv""strings"
)type ChatMessageRequest struct {Inputs         map[string]interface{} `json:"inputs"`Query          string                 `json:"query"`ResponseMode   string                 `json:"response_mode"`ConversationID string                 `json:"conversation_id,omitempty"`User           string                 `json:"user"`
}type ChatMessageResponse struct {ID             string `json:"id"`Answer         string `json:"answer"`ConversationID string `json:"conversation_id"`CreatedAt      int    `json:"created_at"`
}const (DifyBaseURL = "http://192.168.xx.xx:12345/v1" // 这里是你的dify服务地址DifyApiKey  = "app-xxxx" // dify提供的api密钥ChatMsgPath = "/chat-messages"
)func ChatMessages(msg string) string {requestData := ChatMessageRequest{Query:        msg,ResponseMode: "blocking", // 我们先选择阻塞模式,就是等回答全部生成后发回来,而不是sse那种模拟打字输出的形式(streaming)User:         "abc123",}// 将请求数据序列化为 JSONrequestBody, err := json.Marshal(requestData)if err != nil {fmt.Errorf("failed to marshal request data: %v", err)}// 创建 HTTP 请求req, err := http.NewRequest("POST", DifyBaseURL+ChatMsgPath, bytes.NewBuffer(requestBody))if err != nil {log.Fatalf("Failed to create request: %v", err)}// 设置请求头req.Header.Set("Authorization", "Bearer "+DifyApiKey)req.Header.Set("Content-Type", "application/json")// 发送请求client := &http.Client{}// 这里dump了一下看发送请求是否正确,可以删掉dump, _ := httputil.DumpRequest(req, true)fmt.Println(string(dump))resp, err := client.Do(req)if err != nil {log.Fatalf("Failed to send request: %v", err)}defer resp.Body.Close()// 读取响应body, err := io.ReadAll(resp.Body)if err != nil {log.Fatalf("Failed to read response body: %v", err)}// 输出响应fmt.Println("Response Status:", resp.Status)fmt.Println("Response Body:", string(body))var res ChatMessageResponseif err := json.Unmarshal(body, &res); err != nil {fmt.Errorf("Failed to unmarshal response body: %v", err)return ""}fmt.Println("Answer:", res.Answer)return res.Answer // 这个就是dify调大模型获得的返回内容
}

效果

如此这般就可以让飞书机器人接收消息->调用dify或者deepseek的api获得回答->把回答发给用户了
在这里插入图片描述

http://www.ritt.cn/news/22348.html

相关文章:

  • 如何做一个二维码相册seo最新快速排名
  • brophp框架如何做网站专业营销策划团队
  • 运城建设厅官方网站百度优化软件
  • 深圳外贸网站建设seo是什么级别
  • 潍坊市做网站百度关键词推广教程
  • 爱南宁app下载官网最新手机网站优化排名
  • 月刊可以用什么网站做网址大全下载到桌面
  • 网站建设最便宜网站seo外链建设
  • 怎么利用婚庆网站做营销搜索引擎优化搜索优化
  • 孝感市门户网站管理中心怎么制作网页推广
  • 做的系统怎么和网站对接广州优化疫情防控举措
  • 网站单页做301淘宝关键词排名查询工具
  • 泉州网站建设公司首选宁波网站建设推广公司价格
  • 网站建设客服国外市场网站推广公司
  • 在百度做推广送网站好吗宁波seo推广定制
  • 做网站公司(信科网络)上海网络推广专员
  • 唐山疫情最新消息今天seo价格是多少
  • 网站怎么做来流量西安seo代理计费
  • 响应网站 整屏在线建站网页制作网站建设平台
  • 网站快照前显示中文怎么做的百度营销是什么
  • 电脑有固定IP 做网站免费seo网站诊断免费
  • 桂林北站客服电话互联网广告行业
  • 国外营销型网站建设电脑清理软件十大排名
  • 网站服务器 免费百度快照在哪里
  • 网站建设专家公司排行卖链接的网站
  • 温州网站设计网络广告营销
  • 虚拟机web网站怎么做百度刷seo关键词排名
  • 做结婚请柬网站有那些软件测试培训
  • 宾馆网站建设方案推广项目
  • 长春市大学生网站建设关键词挖掘网站