当前位置: 首页 > news >正文

湖南定制响应式网站有哪些百度图片识别搜索

湖南定制响应式网站有哪些,百度图片识别搜索,wordpress 评论加图片,制作赌博软件网站对AI炒股感兴趣的小伙伴可加WX:caihaihua057200(备注:学校/公司名字方向) 另外我还有些AI的应用可以一起研究(我一直开源代码) 1、引言 在这期内容中,我们回到AI预测股票,转而探索…

 对AI炒股感兴趣的小伙伴可加WX:caihaihua057200(备注:学校/公司+名字+方向)

另外我还有些AI的应用可以一起研究(我一直开源代码)

1、引言

在这期内容中,我们回到AI预测股票,转而探索人工智能技术如何应用于另一个有趣的领域:预测A股大盘。

2、AI与股票的关系

在股票预测中,AI充当着数据分析和模式识别的角色。虽然无法确保百分之百准确的结果,但它为增加预测的洞察力和理解提供了全新的途径。

3、数据收集与处理(akshare爬实时上证指数)

import akshare as ak
import numpy as np
import pandas as pd
from pandas.tseries.offsets import CustomBusinessDay
from datetime import datetime
import xgboost as xgbdf = ak.stock_zh_index_daily_em(symbol='sh000001')  

数据预处理:时间特征转换及时间特征结合K线特征


today = datetime.today()
date_str = today.strftime("%Y%m%d")
base = int(datetime.strptime(date_str, "%Y%m%d").timestamp())
change1 = lambda x: (int(datetime.strptime(x, "%Y%m%d").timestamp()) - base) / 86400
change2 = lambda x: (datetime.strptime(str(x), "%Y%m%d")).day
change3 = lambda x: datetime.strptime(str(x), "%Y%m%d").weekday()df['date'] = df['date'].str.replace('-', '')
X = df['date'].apply(lambda x: change1(x)).values.reshape(-1, 1)
X_month_day = df['date'].apply(lambda x: change2(x)).values.reshape(-1, 1)
X_week_day = df['date'].apply(lambda x: change3(x)).values.reshape(-1, 1)
XX = np.concatenate((X, X_week_day, X_month_day), axis=1)[29:]
FT = np.array(df.drop(columns=['date']))
min_vals = np.min(FT, axis=0)
max_vals = np.max(FT, axis=0)
FT = (FT - min_vals) / (max_vals - min_vals)window_size = 30
num_rows, num_columns = FT.shape
new_num_rows = num_rows - window_size + 1
result1 = np.empty((new_num_rows, num_columns))
for i in range(new_num_rows):window = FT[i: i + window_size]window_mean = np.mean(window, axis=0)result1[i] = window_meanresult2 = np.empty((new_num_rows, num_columns))
for i in range(new_num_rows):window = FT[i: i + window_size]window_mean = np.max(window, axis=0)result2[i] = window_meanresult3 = np.empty((new_num_rows, num_columns))
for i in range(new_num_rows):window = FT[i: i + window_size]window_mean = np.min(window, axis=0)result3[i] = window_meanresult4 = np.empty((new_num_rows, num_columns))
for i in range(new_num_rows):window = FT[i: i + window_size]window_mean = np.std(window, axis=0)result4[i] = window_mean
result_list = [result1, result2, result3, result4]
result = np.hstack(result_list)XX = np.concatenate((XX, result), axis=1)

4、预测模型(XGboots)


y1 = df['open'][29:]
y2 = df['close'][29:]
y3 = df['high'][29:]
y4 = df['low'][29:]
models1 = xgb.XGBRegressor()
models2 = xgb.XGBRegressor()
models3 = xgb.XGBRegressor()
models4 = xgb.XGBRegressor()
models1.fit(XX, y1)
models2.fit(XX, y2)
models3.fit(XX, y3)
models4.fit(XX, y4)

5、应用及画图


start_date = pd.to_datetime(today)bday_cn = CustomBusinessDay(weekmask='Mon Tue Wed Thu Fri')
future_dates = pd.date_range(start=start_date, periods=6, freq=bday_cn)
future_dates_str = [date.strftime('%Y-%m-%d') for date in future_dates][1:]
future_dates_str = pd.Series(future_dates_str).str.replace('-', '')
X_x = future_dates_str.apply(lambda x: change1(x)).values.reshape(-1, 1)
X_month_day_x = future_dates_str.apply(lambda x: change2(x)).values.reshape(-1, 1)
X_week_day_x = future_dates_str.apply(lambda x: change3(x)).values.reshape(-1, 1)
XXX = np.concatenate((X_x, X_week_day_x, X_month_day_x), axis=1)
last_column = result[-1:, ]
repeated_last_column = np.tile(last_column, (5, 1))
result = repeated_last_columnXXX = np.concatenate((XXX, result), axis=1)
pred1 = models1.predict(XXX)
pred2 = models2.predict(XXX)
pred3 = models3.predict(XXX)
pred4 = models4.predict(XXX)y1 = np.array(df['open'][-30:])
y2 = np.array(df['close'][-30:])
y3 = np.array(df['high'][-30:])
y4 = np.array(df['low'][-30:])
YD = np.array(df['date'][-30:])data = {'open': np.concatenate([y1, pred1]),'close': np.concatenate([y2, pred2]),'high': np.concatenate([y3, pred3]),'low': np.concatenate([y4, pred4]),'date':np.concatenate([YD,np.array(future_dates_str)])
}df = pd.DataFrame(data)import mplfinance as mpf# df['date'] = pd.date_range(start=RQ, periods=len(df))
df['date'] = pd.to_datetime(df['date'])
df.set_index('date', inplace=True)
# mpf.plot(df, type='candle', title='Stock K-Line')
my_color = mpf.make_marketcolors(up='red',  # 上涨时为红色down='green',  # 下跌时为绿色# edge='i',  # 隐藏k线边缘# volume='in',  # 成交量用同样的颜色inherit=True)my_style = mpf.make_mpf_style(# gridaxis='both',  # 设置网格# gridstyle='-.',# y_on_right=True,marketcolors=my_color)mpf.plot(df, type='candle',style=my_style,# datetime_format='%Y年%m月%d日',title='Stock K-Line')

6、结果(预测下周上证:图中后五天是预测结果)

 总结图中所示:

1、周一到周三略微上涨一点点。

2、下周四五高开高走(令人惊讶)。

如果提前布局的话应该是选择在周四找最低点买入。

全代码,一件运行:

import akshare as ak
import numpy as np
import pandas as pd
from pandas.tseries.offsets import CustomBusinessDay
from datetime import datetime
import xgboost as xgbdf = ak.stock_zh_index_daily_em(symbol='sh000001')today = datetime.today()
date_str = today.strftime("%Y%m%d")
base = int(datetime.strptime(date_str, "%Y%m%d").timestamp())
change1 = lambda x: (int(datetime.strptime(x, "%Y%m%d").timestamp()) - base) / 86400
change2 = lambda x: (datetime.strptime(str(x), "%Y%m%d")).day
change3 = lambda x: datetime.strptime(str(x), "%Y%m%d").weekday()df['date'] = df['date'].str.replace('-', '')
X = df['date'].apply(lambda x: change1(x)).values.reshape(-1, 1)
X_month_day = df['date'].apply(lambda x: change2(x)).values.reshape(-1, 1)
X_week_day = df['date'].apply(lambda x: change3(x)).values.reshape(-1, 1)
XX = np.concatenate((X, X_week_day, X_month_day), axis=1)[29:]
FT = np.array(df.drop(columns=['date']))
min_vals = np.min(FT, axis=0)
max_vals = np.max(FT, axis=0)
FT = (FT - min_vals) / (max_vals - min_vals)window_size = 30
num_rows, num_columns = FT.shape
new_num_rows = num_rows - window_size + 1
result1 = np.empty((new_num_rows, num_columns))
for i in range(new_num_rows):window = FT[i: i + window_size]window_mean = np.mean(window, axis=0)result1[i] = window_meanresult2 = np.empty((new_num_rows, num_columns))
for i in range(new_num_rows):window = FT[i: i + window_size]window_mean = np.max(window, axis=0)result2[i] = window_meanresult3 = np.empty((new_num_rows, num_columns))
for i in range(new_num_rows):window = FT[i: i + window_size]window_mean = np.min(window, axis=0)result3[i] = window_meanresult4 = np.empty((new_num_rows, num_columns))
for i in range(new_num_rows):window = FT[i: i + window_size]window_mean = np.std(window, axis=0)result4[i] = window_mean
result_list = [result1, result2, result3, result4]
result = np.hstack(result_list)XX = np.concatenate((XX, result), axis=1)y1 = df['open'][29:]
y2 = df['close'][29:]
y3 = df['high'][29:]
y4 = df['low'][29:]
models1 = xgb.XGBRegressor()
models2 = xgb.XGBRegressor()
models3 = xgb.XGBRegressor()
models4 = xgb.XGBRegressor()
models1.fit(XX, y1)
models2.fit(XX, y2)
models3.fit(XX, y3)
models4.fit(XX, y4)start_date = pd.to_datetime(today)bday_cn = CustomBusinessDay(weekmask='Mon Tue Wed Thu Fri')
future_dates = pd.date_range(start=start_date, periods=6, freq=bday_cn)
future_dates_str = [date.strftime('%Y-%m-%d') for date in future_dates][1:]
future_dates_str = pd.Series(future_dates_str).str.replace('-', '')
X_x = future_dates_str.apply(lambda x: change1(x)).values.reshape(-1, 1)
X_month_day_x = future_dates_str.apply(lambda x: change2(x)).values.reshape(-1, 1)
X_week_day_x = future_dates_str.apply(lambda x: change3(x)).values.reshape(-1, 1)
XXX = np.concatenate((X_x, X_week_day_x, X_month_day_x), axis=1)
last_column = result[-1:, ]
repeated_last_column = np.tile(last_column, (5, 1))
result = repeated_last_columnXXX = np.concatenate((XXX, result), axis=1)
pred1 = models1.predict(XXX)
pred2 = models2.predict(XXX)
pred3 = models3.predict(XXX)
pred4 = models4.predict(XXX)y1 = np.array(df['open'][-30:])
y2 = np.array(df['close'][-30:])
y3 = np.array(df['high'][-30:])
y4 = np.array(df['low'][-30:])
YD = np.array(df['date'][-30:])data = {'open': np.concatenate([y1, pred1]),'close': np.concatenate([y2, pred2]),'high': np.concatenate([y3, pred3]),'low': np.concatenate([y4, pred4]),'date':np.concatenate([YD,np.array(future_dates_str)])
}df = pd.DataFrame(data)import mplfinance as mpf# df['date'] = pd.date_range(start=RQ, periods=len(df))
df['date'] = pd.to_datetime(df['date'])
df.set_index('date', inplace=True)
# mpf.plot(df, type='candle', title='Stock K-Line')
my_color = mpf.make_marketcolors(up='red',  # 上涨时为红色down='green',  # 下跌时为绿色# edge='i',  # 隐藏k线边缘# volume='in',  # 成交量用同样的颜色inherit=True)my_style = mpf.make_mpf_style(# gridaxis='both',  # 设置网格# gridstyle='-.',# y_on_right=True,marketcolors=my_color)mpf.plot(df, type='candle',style=my_style,# datetime_format='%Y年%m月%d日',title='Stock K-Line')

http://www.ritt.cn/news/23280.html

相关文章:

  • 深建工程建设集团网站优化排名软件网
  • 做网站赚钱还是企业宣传片营销推广方案
  • 前端是做网站的吗免费b站软件推广网站2023
  • 有什么做兼职的好网站宁德市市长
  • 网站策划职业规划网络营销的概念及特征
  • 专门做ppt的网站叫什么搜索引擎优化的主要特征
  • 公司做网站怎么构思seo关键词排名优化推荐
  • 网站开发长春响应式模版移动优化
  • 做外贸生意上国外网站爱站在线关键词挖掘
  • 大数据网站怎么做深圳seo公司排名
  • 电商网站前台功能模块推广公司品牌
  • 龙江网站建设安全又舒适的避孕方法有哪些
  • 长沙发布appseo优化教学视频
  • 旅游网站设计及开发企业培训机构排名
  • 帮你做决定的网站杭州排名优化公司电话
  • 中文企业网站模板东莞营销型网站建设
  • 姑苏网站制作产品软文
  • 怎么做模板网站域名查询
  • 企业网站建设服务内容关键词规划师
  • 做短视频网站需要审批黄山seo推广
  • 上海公司网站建设竞价推广遇到恶意点击怎么办
  • 自己网站如何做关键词排名每日军事新闻
  • 张家港网站建设培训关键词挖掘工具免费
  • 武昌网站建设价格多少网络推广怎么学
  • 网站建设怎么用ftp上传到web西安网络优化大的公司
  • php 网站 整合 数据库百度推广哪种效果好
  • 免费的企业网站cms国内最好的seo培训
  • app开发哪家好公司谷歌优化技巧
  • 延吉 网站开发seo排名推广
  • ninety ajax wordpressseo学校