建设银行信用卡网站是哪个好头条发布视频成功显示404
文章目录
- 题目
- 标题和出处
- 难度
- 题目描述
- 要求
- 示例
- 数据范围
- 解法一
- 思路和算法
- 代码
- 复杂度分析
- 解法二
- 思路和算法
- 代码
- 复杂度分析
题目
标题和出处
标题:设计哈希集合
出处:705. 设计哈希集合
难度
3 级
题目描述
要求
不使用任何内建的哈希表库设计一个哈希集合。
实现 MyHashSet\texttt{MyHashSet}MyHashSet 类:
- voidadd(key)\texttt{void add(key)}void add(key) 向哈希集合中插入值 key\texttt{key}key。
- boolcontains(key)\texttt{bool contains(key)}bool contains(key) 返回哈希集合中是否存在这个值 key\texttt{key}key。
- voidremove(key)\texttt{void remove(key)}void remove(key) 将给定值 key\texttt{key}key 从哈希集合中删除。如果哈希集合中没有这个值,什么也不做。
示例
示例 1:
输入:
["MyHashSet","add","add","contains","contains","add","contains","remove","contains"]\texttt{["MyHashSet", "add", "add", "contains", "contains", "add", "contains", "remove", "contains"]}["MyHashSet", "add", "add", "contains", "contains", "add", "contains", "remove", "contains"]
[[],[1],[2],[1],[3],[2],[2],[2],[2]]\texttt{[[], [1], [2], [1], [3], [2], [2], [2], [2]]}[[], [1], [2], [1], [3], [2], [2], [2], [2]]
输出:
[null,null,null,true,false,null,true,null,false]\texttt{[null, null, null, true, false, null, true, null, false]}[null, null, null, true, false, null, true, null, false]
解释:
MyHashSetmyHashSet=newMyHashSet();\texttt{MyHashSet myHashSet = new MyHashSet();}MyHashSet myHashSet = new MyHashSet();
myHashSet.add(1);\texttt{myHashSet.add(1);}myHashSet.add(1); // set=[1]\texttt{set = [1]}set = [1]
myHashSet.add(2);\texttt{myHashSet.add(2);}myHashSet.add(2); // set=[1,2]\texttt{set = [1, 2]}set = [1, 2]
myHashSet.contains(1);\texttt{myHashSet.contains(1);}myHashSet.contains(1); // 返回 True\texttt{True}True
myHashSet.contains(3);\texttt{myHashSet.contains(3);}myHashSet.contains(3); // 返回 False\texttt{False}False(未找到)
myHashSet.add(2);\texttt{myHashSet.add(2);}myHashSet.add(2); // set=[1,2]\texttt{set = [1, 2]}set = [1, 2]
myHashSet.contains(2);\texttt{myHashSet.contains(2);}myHashSet.contains(2); // 返回 True\texttt{True}True
myHashSet.remove(2);\texttt{myHashSet.remove(2);}myHashSet.remove(2); // set=[1]\texttt{set = [1]}set = [1]
myHashSet.contains(2);\texttt{myHashSet.contains(2);}myHashSet.contains(2); // 返回 False\texttt{False}False(已移除)
数据范围
- 0≤key≤106\texttt{0} \le \texttt{key} \le \texttt{10}^\texttt{6}0≤key≤106
- 最多调用 104\texttt{10}^\texttt{4}104 次 add\texttt{add}add、remove\texttt{remove}remove 和 contains\texttt{contains}contains
解法一
思路和算法
由于 key\textit{key}key 的取值范围是 [0,106][0, 10^6][0,106],因此可以创建长度为 106+110^6 + 1106+1 的布尔型数组表示哈希集合,数组中的下标为 key\textit{key}key 的元素值表示 key\textit{key}key 是否在哈希集合中。
构造方法中,将数组初始化为长度 106+110^6 + 1106+1 的数组,并将数组中的全部元素初始化为 false\text{false}false。
对于 add\textit{add}add 操作,将数组中的下标为 key\textit{key}key 的元素设为 true\text{true}true。
对于 contains\textit{contains}contains 操作,返回数组中的下标为 key\textit{key}key 的元素。
对于 remove\textit{remove}remove 操作,将数组中的下标为 key\textit{key}key 的元素设为 false\text{false}false。
需要说明的是,该解法虽然实现简单,但是不适合在面试中使用。
代码
class MyHashSet {boolean[] set;public MyHashSet() {set = new boolean[1000001];Arrays.fill(set, false);}public void add(int key) {set[key] = true;}public void remove(int key) {set[key] = false;}public boolean contains(int key) {return set[key];}
}
复杂度分析
-
时间复杂度:构造方法的时间复杂度是 O(C)O(C)O(C),各项操作的时间复杂度都是 O(1)O(1)O(1),其中 CCC 是 key\textit{key}key 的取值范围的元素个数,这道题中 C=106+1C = 10^6 + 1C=106+1。
构造方法需要创建长度为 CCC 的数组并将每个元素设为初始值,时间复杂度是 O(C)O(C)O(C)。
各项操作只需要对数组中的一个元素赋值或返回元素值,时间复杂度是 O(1)O(1)O(1)。 -
空间复杂度:O(C)O(C)O(C),其中 CCC 是 key\textit{key}key 的取值范围的元素个数,这道题中 C=106+1C = 10^6 + 1C=106+1。需要创建长度为 CCC 的数组表示哈希集合。
解法二
思路和算法
哈希集合的常见实现方法是链表数组,数组的每个下标对应哈希函数可以映射到的索引,当出现哈希冲突时,使用链地址法解决哈希冲突。
用 BASE\textit{BASE}BASE 表示链表数组的长度,则可以使用一个简单的哈希函数:hash(x)=xmodBASE\text{hash}(x) = x \bmod \textit{BASE}hash(x)=xmodBASE,每个键经过哈希函数映射之后的值一定在范围 [0,BASE−1][0, \textit{BASE} - 1][0,BASE−1] 内。为了将哈希函数的值尽可能均匀分布,降低哈希冲突的频率,链表数组的长度应选择质数。此处取链表数组的长度为 101310131013。
构造方法中,将链表数组初始化为长度 BASE\textit{BASE}BASE 的链表数组,并将链表数组中的全部元素初始化为空链表。
对于各项操作,首先计算 key\textit{key}key 对应的哈希值,得到链表数组的下标,根据下标在链表数组中得到相应的链表,然后在链表中执行相应操作。
对于 add\textit{add}add 操作,在链表数组中得到相应的链表之后,遍历链表,如果遇到元素 key\textit{key}key 则不执行任何操作直接返回,如果遍历结束没有遇到元素 key\textit{key}key 则在链表末尾添加元素 key\textit{key}key。
对于 contains\textit{contains}contains 操作,在链表数组中得到相应的链表之后,遍历链表,如果遇到元素 key\textit{key}key 则返回 true\text{true}true,如果遍历结束没有遇到元素 key\textit{key}key 则返回 false\text{false}false。
对于 remove\textit{remove}remove 操作,在链表数组中得到相应的链表之后,遍历链表,如果遇到元素 key\textit{key}key 则将其删除,如果遍历结束没有遇到元素 key\textit{key}key 则不执行任何操作。
实现方面,为了提升运行效率,使用迭代器遍历链表和执行删除操作。
代码
class MyHashSet {private static final int BASE = 1013;private LinkedList<Integer>[] set;public MyHashSet() {set = new LinkedList[BASE];for (int i = 0; i < BASE; i++) {set[i] = new LinkedList<Integer>();}}public void add(int key) {int index = key % BASE;LinkedList<Integer> list = set[index];Iterator<Integer> iterator = list.iterator();while (iterator.hasNext()) {Integer element = iterator.next();if (element == key) {return;}}list.offerLast(key);}public void remove(int key) {int index = key % BASE;LinkedList<Integer> list = set[index];Iterator<Integer> iterator = list.iterator();while (iterator.hasNext()) {Integer element = iterator.next();if (element == key) {iterator.remove();break;}}}public boolean contains(int key) {int index = key % BASE;LinkedList<Integer> list = set[index];Iterator<Integer> iterator = list.iterator();while (iterator.hasNext()) {Integer element = iterator.next();if (element == key) {return true;}}return false;}
}
复杂度分析
-
时间复杂度:构造方法的时间复杂度是 O(BASE)O(\textit{BASE})O(BASE),各项操作的时间复杂度都是 O(nBASE)O\Big(\dfrac{n}{\textit{BASE}}\Big)O(BASEn),其中 nnn 是哈希集合中的元素个数,BASE\textit{BASE}BASE 是链表数组的长度。
构造方法需要创建长度为 BASE\textit{BASE}BASE 的数组并将每个元素设为初始值,时间复杂度是 O(BASE)O(\textit{BASE})O(BASE)。
各项操作需要根据哈希函数计算哈希值,然后遍历链表。计算哈希值需要 O(1)O(1)O(1) 的时间,假设哈希值分布均匀,每个链表的平均长度是 O(nBASE)O\Big(\dfrac{n}{\textit{BASE}}\Big)O(BASEn),因此需要 O(nBASE)O\Big(\dfrac{n}{\textit{BASE}}\Big)O(BASEn) 的时间遍历哈希表。 -
空间复杂度:O(n+BASE)O(n + \textit{BASE})O(n+BASE),其中 nnn 是哈希集合中的元素个数,BASE\textit{BASE}BASE 是链表数组的长度。存储 nnn 个元素需要 O(n)O(n)O(n) 的空间,链表数组需要 O(BASE)O(\textit{BASE})O(BASE) 的空间。