当前位置: 首页 > news >正文

智慧团建电脑版登录入口seo助理

智慧团建电脑版登录入口,seo助理,上海高端网站,深圳做电商平台网站讲解关于slam一系列文章汇总链接:史上最全slam从零开始,针对于本栏目讲解的 卡尔曼家族从零解剖 链接 :卡尔曼家族从零解剖-(00)目录最新无死角讲解:https://blog.csdn.net/weixin_43013761/article/details/133846882 文末正下方中心提供了本人 联系…

讲解关于slam一系列文章汇总链接:史上最全slam从零开始,针对于本栏目讲解的 卡尔曼家族从零解剖 链接 :卡尔曼家族从零解剖-(00)目录最新无死角讲解:https://blog.csdn.net/weixin_43013761/article/details/133846882
 
文末正下方中心提供了本人 联系方式, 点击本人照片即可显示 W X → 官方认证 {\color{blue}{文末正下方中心}提供了本人 \color{red} 联系方式,\color{blue}点击本人照片即可显示WX→官方认证} 文末正下方中心提供了本人联系方式,点击本人照片即可显示WX官方认证
 

一、前言

通过五个章节的分析,目前对于一维卡尔曼滤波有了一定层次的理解,这里先给出上篇博客推导出来的结论(卡尔曼五大公式):
①: x ˇ k = f x ^ k − 1 ②: σ X k − = f 2 σ X k − 1 + + σ Q k − 1 (01) \color{red} ①:\tag{01}\check x_{k}= f\hat x_{k-1}~~~~~~~~~~~~~~~②:\sigma^{-}_{X_{k}}=f^2\sigma_{X_{k-1}}^{+}+\sigma_{Q_{k-1}} xˇk=fx^k1               σXk=f2σXk1++σQk1(01) ③: k k = h σ X k − h 2 σ X k − + σ R k (02) \color{red} \tag{02}③:k_k=\frac{h \sigma_{X_k}^{-} }{h^{2} \sigma_{X_k}^{-} +\sigma_{R_k}} kk=h2σXk+σRkhσXk(02) ④: x ^ k = k k ( y k − h x ˇ ) + x ˇ ⑤: σ X k + = ( 1 − k k ) σ X k − (03) \color{red} \tag{03} ④:\hat x_{k}=k_k(y_k-h\check x)+\check x~~~~~~~~~~~~~~~~~~⑤:\sigma^+_{X_{k}}=(1-k_k) \sigma_{X_k}^{-} x^k=kk(ykhxˇ)+xˇ                  σXk+=(1kk)σXk(03)
上面的五个式子很明显是递推的若假设已知 x ^ 0 \hat x_0 x^0 σ X 0 + \sigma_{X_{0}}^+ σX0+、以及各个时刻观测 y k y_k yk,则可推导出出 x ^ k \hat x_k x^k σ X k + \sigma_{X_{k}}^+ σXk+,如下:
【 x ^ 0 , σ X 0 + , y 1 】 → 【 x ^ 1 , σ X 1 + , y 2 】 → ⋯ → 【 x ^ k , σ X k + 】 (04) \color{Green} \tag{04}【\hat x_0,\sigma_{X_{0}}^+,y_1】→【\hat x_1,\sigma_{X_{1}}^+,y_2】→\cdots→【\hat x_k,\sigma_{X_{k}}^+】 x^0,σX0+,y1x^1,σX1+,y2x^k,σXk+(04)该篇本博客主要是进行编程实践,为了公式与源码更好的对应起来,对上述公式公式进行改写,因为编程中通常需要进行模块下,所以代码中会实现一个函数,该函数只完成一次递推,故上5式符号简写为:
①: x m i n u s = f x p l u s ②: σ m i n u s = f 2 σ p l u s + q (05) \color{red} ①:\tag{05} x_ {minus}= f x_{plus}~~~~~~~~~~~~~~~②:\sigma_{minus}=f^2\sigma_{plus}+q xminus=fxplus               σminus=f2σplus+q(05) ③: k = h σ m i n u s h 2 σ m i n u s + r (06) \color{red} \tag{06}③:k=\frac{h \sigma_{minus} }{h^{2} \sigma_{minus} +r} k=h2σminus+rhσminus(06) ④: x p l u s = k ( y − h x m i n u s ) + x m i n u s ⑤: σ p l u s = ( 1 − k ) σ m i n u s (07) \color{red} \tag{07} ④: x_{plus}=k(y-h x_{minus})+x_{minus}~~~~~~~~~~~~~~~~~~⑤:\sigma_{plus}=(1-k) \sigma_{minus} xplus=k(yhxminus)+xminus                  σplus=(1k)σminus(07)上式中的 r = σ R k r=\sigma_{R_k} r=σRk(预测过程标准差,主要影响收敛速度), q = σ R k q=\sigma_{R_k} q=σRk(观测过程标准差,理解为传感器精度,可以通过实验获得),这两个值都是固定值,迭代过程中通常不会改变。由于是编程,(05) 式中的 x m i n u s x_ {minus} xminus 最终会被 (07) 式中的 x p l u s x_{plus} xplus 覆盖,同理 σ p l u s \sigma_{plus} σplus 也会被覆盖。每次计算出来的 x p l u s x_{plus} xplus σ p l u s \sigma_{plus} σplus 又会作为下一次的 x m i n u s x_{minus} xminus σ m i n u s \sigma_{minus} σminus 进行输入。

二、C++一维示例

是一个程序, 假设有这样一条曲线 y = 0.5 x 2 + 8 y=0.5x^2+8 y=0.5x2+8 ,现在以其为真值,当然实际应用中我们是不知道的,这里是为了模拟观测数据。观测数据在真值的基础上叠加一个高斯噪声 N ( 0 , 100 ) N(0,100) N(0,100),也就是公式推导中的 y k y_k yk。总之,通过这种方式,拿到了一批带有高斯噪声的 y k y_k yk 数据。

http://www.ritt.cn/news/24421.html

相关文章:

  • 品牌好的佛山网站建设价格收录网
  • 泰安做网络推广的公司个人做seo怎么赚钱
  • 网站开发需要经历哪些主要阶段嘉兴网站建设
  • 公司网站后台维护怎么做seo应用领域有哪些
  • 王璞网站开发实战十大搜索引擎神器
  • b2b怎么开通网站seo排名
  • 西安政府网站建设公司哪家好怎么制作一个网页
  • 移动互联和网站开发成都网络推广外包
  • 宁波网站建设详细策划制作一个网站的基本步骤
  • 武汉网站建设027best国内新闻摘抄2022年
  • 网站收录就是没排名seo网站页面优化包含
  • 做网站爱网站推广营销
  • 做网站时无法上传图片广点通广告平台
  • 网站进度条搜索引擎优化怎么做的
  • 网络公司给销售公司做网站哪里可以代写软文
  • 免费网站开发软件商业网站
  • php 网站后台自助建站系统平台
  • 网站关键词越多越好吗百度总部投诉电话
  • 视频涉台互联网网站怎么做如何做好营销
  • 做网站参考线怎么拉新手怎么做seo优化
  • 网站制作 成都湖南专业的关键词优化
  • 做地方网站需要什么部门批准长沙网站推广服务公司
  • 科技志愿信息平台一键优化下载
  • 做饮食网站怎么样百度推广客户端手机版
  • 网站域名登百度一下首页网页手机版
  • 做木箱的网站新品怎么刷关键词
  • 可以做网络推广的网站梅花seo 快速排名软件
  • 网站的功能性外贸平台自建站
  • 团购网站自个做阐述网络营销策略的内容
  • 网站建设找北冥有鱼培训学校