当前位置: 首页 > news >正文

公司旅游视频网站模板免费下载网站建设怎么弄

公司旅游视频网站模板免费下载,网站建设怎么弄,有口碑的中山网站建设,有内涵的公司名字一、文本的基本单位 1、Token 定义:文本的最小单位,例如单词、标点符号。 示例: 原句: "I love NLP." 分词结果: [I, love, NLP, .] 2、语法与语义 语法:词的结构和句子的组合规则。 语义&a…

一、文本的基本单位

1、Token

定义:文本的最小单位,例如单词、标点符号。

示例:

原句: "I love NLP."

分词结果: ['I', 'love', 'NLP', '.']

2、语法与语义

语法:词的结构和句子的组合规则。

语义:词的含义和上下文理解。

示例:

句子 "Time flies like an arrow." 有多重解释:

时间像箭一样飞逝。

像箭一样的飞虫在时间中飞翔。

二、基本的文本预处理

1、分词(Tokenization)

  • 英文分词:基于空格或标点分隔。
  • 中文分词:基于统计和规则的方法,如 Jieba。

2、去停用词

停用词:意义较小或频率过高的词,例如 "the", "is", "and"。

3、词干化

将词语削减为根形式,例如 running → run。

4、词形还原

考虑语法规则还原为词的基本形式,例如 mice → mouse。

三、用nltk库做文本预处理

NLTK(Natural Language Toolkit) 是一个功能强大、 灵活性高的开源 Python 库, 专为自然

语言处理(NLP) 领域的研究和开发而设计。 NLTK 提供了一套丰富的工具和资源, 适合处

理、分析和理解人类语言文本。

1、文本预处理包

  • 分词: nltk.tokenize.word_tokenize
  • 停用词库: nltk.corpus.stopwords
  • 词干化: nltk.stem.PorterStemmer
  • 词形还原: nltk.stem.WordNetLemmatizer

2、案例

使用 Python 对自己的文本数据进行分词、去停用词操作,并计算剩余单词的数量

文本如下:

"Dr. Smith's favorite movie in 2024 is 'Inception'; he rates it 9/10 stars! Isn't that amazing? Let's analyze this #text with NLP techniques: @homework1.py, line 42."

代码如下:

from nltk import pos_tag
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer,WordNetLemmatizerfrom src.common import utildef text_prepare(text):#分词print(f"原始文本:{text}")tokens = word_tokenize(text)print(f"分词后:{tokens}")#去除停用词en_stopwords  = stopwords.words('english') #获取英文停用词表print(f"去除停用词前文本长度:{len(tokens)}")filter_stop_words = []for token in tokens:token = token.lower()if token not in en_stopwords:filter_stop_words.append(token)print(f"去除停用词后文本:{filter_stop_words}")print(f"去除停用词后文本长度:{len(filter_stop_words)}")#词干化prepare_stem = []porter_stemmer = PorterStemmer()for token in filter_stop_words:token = porter_stemmer.stem(token)prepare_stem.append(token)print(f"词干化后:{prepare_stem}")#词性标注tagged_pos = pos_tag(filter_stop_words)print(f"词性标注后:{tagged_pos}")#词形还原prepare_lemma = []wordnetLemma = WordNetLemmatizer()for word, pos in tagged_pos:prepare_lemma.append(wordnetLemma.lemmatize(word,util.get_wordnet_pos(pos)))print(f"词形还原后:{prepare_lemma}")def main():file_path = "example"with(open(file_path, "r", encoding="utf-8")) as file:text = file.read()text_prepare(text)if __name__ == '__main__':main()

运行结果:

原始文本:"Dr. Smith's favorite movie in 2024 is 'Inception'; he rates it 9/10 stars! Isn't that amazing? Let's analyze this #text with NLP techniques: @homework1.py, line 42."分词后:['``', 'Dr.', 'Smith', "'s", 'favorite', 'movie', 'in', '2024', 'is', "'Inception", "'", ';', 'he', 'rates', 'it', '9/10', 'stars', '!', 'Is', "n't", 'that', 'amazing', '?', 'Let', "'s", 'analyze', 'this', '#', 'text', 'with', 'NLP', 'techniques', ':', '@', 'homework1.py', ',', 'line', '42', '.', "''"]去除停用词前文本长度:40去除停用词后文本:['``', 'dr.', 'smith', "'s", 'favorite', 'movie', '2024', "'inception", "'", ';', 'rates', '9/10', 'stars', '!', "n't", 'amazing', '?', 'let', "'s", 'analyze', '#', 'text', 'nlp', 'techniques', ':', '@', 'homework1.py', ',', 'line', '42', '.', "''"]
去除停用词后文本长度:32词干化后:['``', 'dr.', 'smith', "'s", 'favorit', 'movi', '2024', "'incept", "'", ';', 'rate', '9/10', 'star', '!', "n't", 'amaz', '?', 'let', "'s", 'analyz', '#', 'text', 'nlp', 'techniqu', ':', '@', 'homework1.pi', ',', 'line', '42', '.', "''"]词性标注后:[('``', '``'), ('dr.', 'NN'), ('smith', 'NN'), ("'s", 'POS'), ('favorite', 'JJ'), ('movie', 'NN'), ('2024', 'CD'), ("'inception", 'NN'), ("'", "''"), (';', ':'), ('rates', 'NNS'), ('9/10', 'CD'), ('stars', 'NNS'), ('!', '.'), ("n't", 'RB'), ('amazing', 'VBG'), ('?', '.'), ('let', 'NN'), ("'s", 'POS'), ('analyze', 'JJ'), ('#', '#'), ('text', 'JJ'), ('nlp', 'NN'), ('techniques', 'NNS'), (':', ':'), ('@', 'NN'), ('homework1.py', 'NN'), (',', ','), ('line', 'NN'), ('42', 'CD'), ('.', '.'), ("''", "''")]词形还原后:['``', 'dr.', 'smith', "'s", 'favorite', 'movie', '2024', "'inception", "'", ';', 'rate', '9/10', 'star', '!', "n't", 'amaze', '?', 'let', "'s", 'analyze', '#', 'text', 'nlp', 'technique', ':', '@', 'homework1.py', ',', 'line', '42', '.', "''"]

http://www.ritt.cn/news/26196.html

相关文章:

  • 网站域名 没有续费网络推广哪个平台最好
  • 常州建站优化百度关键词seo推广
  • 做网站的能赚多少钱百度下载安装app
  • 京东网站设计特点推广普通话的宣传语
  • 在360网站上怎么做推广高端企业建站公司
  • 网站开发语言在那看出来网络营销活动案例
  • 四合一网站建设北京网上推广
  • 做网站设计赚钱吗seo顾问
  • wordpress更改主题关键词优化搜索引擎
  • 网站婚礼服务态网站建设论文中关村标准化协会
  • 网站seo怎么做西安疫情最新数据消息中高风险地区
  • 帝国cms怎么做网站手机优化软件哪个好
  • 公司要招个做网站的人重庆seo网站
  • 网站做优化多少钱百家港 seo服务
  • 网站做跳转网站的seo是什么意思
  • 找人做的网站怎么看ftp全国疫情高峰感染高峰
  • 做设计兼职的网站婚恋网站排名前三
  • 湘潭做网站 都来磐石网络bt磁力搜索引擎在线
  • 宿州网站建设开发公司哪家好长沙seo优化
  • asp动态网站开发网推公司
  • 北京网站建设 seo公司微信营销的特点
  • wordpress多梦南京百度推广优化
  • wpf做的网站销售网站排名
  • 常州网站建设公司价位打开百度app
  • 罗湖网站建设58商品营销推广的方法有哪些
  • 初中电脑做网站的软件网站建设工作总结
  • 制作免费个人网站中山seo排名
  • 大题小做网站推广赚钱平台
  • 西安网站公司排名宁波最好的推广平台
  • 阿里云建设网站教程aso优化{ }贴吧