当前位置: 首页 > news >正文

厦门专业做网站公司百度怎么搜索图片

厦门专业做网站公司,百度怎么搜索图片,ftp 网站 怎么上传,农村淘宝官网首页scikit-learn(或sklearn)的数据预处理模块提供了一系列用于处理和准备数据的工具。这些工具可以帮助你在将数据输入到机器学习模型之前对其进行预处理、清洗和转换。以下是一些常用的sklearn.preprocessing模块中的类和功能: 1. 数据缩放和中…

        `scikit-learn`(或`sklearn`)的数据预处理模块提供了一系列用于处理和准备数据的工具。这些工具可以帮助你在将数据输入到机器学习模型之前对其进行预处理、清洗和转换。以下是一些常用的`sklearn.preprocessing`模块中的类和功能:

1. 数据缩放和中心化:
   - `StandardScaler`: 将数据进行标准化,使得每个特征的均值为0,方差为1。
   - `MinMaxScaler`: 将数据缩放到指定的最小值和最大值之间(通常是0到1)。
   - `RobustScaler`: 对数据进行缩放,可以抵抗异常值的影响。
   - `MaxAbsScaler`: 将数据按特征的绝对值最大缩放。

2. 类别特征编码:
   - `LabelEncoder`: 将类别变量编码为整数标签。
   - `OneHotEncoder`: 将类别变量转换为二进制编码的多个列。

3. 缺失值处理:
   - `SimpleImputer`: 使用均值、中位数、众数等填充缺失值。
   - `KNNImputer`: 使用最近邻的值来填充缺失值。

4. 数据变换:
   - `PolynomialFeatures`: 通过创建多项式特征扩展特征空间。
   - `FunctionTransformer`: 通过自定义函数对数据进行转换。

5. 数据分箱(Binning):
   - `KBinsDiscretizer`: 将连续特征分成离散的箱子。

6. 正则化:
   - `Normalizer`: 对样本进行归一化,使其具有单位范数。

7. 特征选择:
   - `SelectKBest`: 基于统计测试选择排名前k个最好的特征。
   - `RFE`(递归特征消除):逐步选择特征,通过迭代来识别最重要的特征。

8. 数据流水线(Pipeline):
   - `Pipeline`: 将多个数据预处理步骤和模型训练步骤连接起来,以便更好地管理工作流程。

这些只是`sklearn.preprocessing`模块中提供的一些常见功能。你可以根据数据和问题的特点选择适合的预处理步骤来优化机器学习模型的性能。要使用这些工具,你需要首先安装`scikit-learn`库,并在代码中导入相应的类。

将每一列特征标准化为标准正太分布,注意,标准化是针对每一列而言的
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from matplotlib improt gridspec
import numpy as np
import matpotlib.pyplot as plt

 1)StandardScaler

cps = np.random.random_integers(0, 100, (100, 2))
# 创建StandardScaler 对象,再调用fit_transform 方法,传入一个格式的参数数据作为训练集.
ss = StandardScaler()
std_cps = ss.fit_transform(cps)
gs = gridspec.GridSpec(5,5)
fig = plt.figure()
ax1 = fig.add_subplot(gs[0:2, 1:4])
ax2 = fig.add_subplot(gs[3:5, 1:4])
ax1.scatter(cps[:, 0], cps[:, 1])
ax2.scatter(std_cps[:, 0], std_cps[:, 1])
plt.show()

2) MinMaxScaler

        MinMaxScaler:使得特征的分布在一个给定的最小值和最大值的范围内.一般情况下载0`1之间(为了对付哪些标准差相当小的特征并保留下稀疏数据中的0值.)

min_max_scaler = preprocessing.MinMaxScaler()
x_minmax = min_max_scaler.fit_transform(x)

3)MaxAbsCaler

        MaxAbsScaler:数据会被规模化到-1`1之间,就是特征中,所有数据都会除以最大值,该方法对哪些已经中心化均值为0,或者稀疏的数据有意义.

max_abs_scaler = preprocessing.MaxAbsScaler()
x_train_maxsbs = max_abs_scaler.fit_transform(x)
x_train_maxsbs

4) 正则化Normalization

        正则化是将样本在向量空间模型上的一个转换,常常被使用在分类和聚类中,使用函数normalize实现一个单向量的正则化功能.正则化化有I1,I2等 

x_normalized = preprocessing.normalize(x, norm='l2')
print(x)

5) 二值化 

        特征的二值化(指将数值型的特征数据转换为布尔类型的值,使用实用类Binarizer),默认是根据0来二值化,大于0的都标记为1,小于等于0的都标记为0.通过设置threshold参数来更改该阈值

from sklearn import preprocessing
import numpy as np# 创建一组特征数据,每一行表示一个样本,每一列表示一个特征
x = np.array([[1., -1., 2.],[2., 0., 0.],[0., 1., -1.]])binarizer = preprocessing.Binarizer().fit(x)
binarizer.transform(x)binarizer = preprocessing.Binarizer(threshold=1.5)
binarizer.transform(x)

6) 为类别特征编码 

from sklearn import preprocessing
enc = preprocessing.OneHotEncoder()
enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])    # fit来学习编码
enc.transform([[0, 1, 3]]).toarray()    # 进行编码

7) 弥补缺失数据 

import numpy as np
from sklearn.preprocessing import Imputer
imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
imp.fit domain name is for sale. Inquire now.([[1, 2], [np.nan, 3], [7, 6]])
x = [[np.nan, 2], [6, np.nan], [7, 6]]
imp.transform(x)

Imputer类同样也可以支持稀疏矩阵,以下例子将0作为了缺失值,为其补上均值

import scipy.sparse as sp
# 创建一个稀疏矩阵
x = sp.csc_matrix([[1, 2], [0, 3], [7, 6]])
imp = Imputer(missing_values=0, strategy='mean', verbose=0)
imp.fit domain name is for sale. Inquire now.(x)
x_test = sp.csc_matrix([[0, 2], [6, 0], [7, 6]])
imp.transform(x_test)

http://www.ritt.cn/news/26665.html

相关文章:

  • 有自己域名如何做网站应用宝aso优化
  • 建设银行业务管理中心网站快速排名优化
  • 广东公诚通信建设监理有限公司网站网络营销经典失败案例
  • 住房和城乡建设部网站公告代运营网店公司
  • 东莞石龙网站建设深圳seo博客
  • php双语网站互联网广告推广是什么
  • 韩国男女做游戏视频网站seo结算系统
  • 我想买个空间自己做网站网站seo关键词
  • 建筑工地网站有哪些平台推广方案
  • 南京网络营销培训seo培训费用
  • 怎样做企业网站备案网络推广的具体方式
  • wordpress插件汉化教程株洲企业seo优化
  • python 做网站教程重庆百度快照优化
  • 做旅游网站选什么空间百度推广账号怎么申请
  • 哪个网站做老款二手车北京官网seo收费
  • 海南做网站的湖北网站推广
  • 网站建设华科技网站建设培训机构
  • 自己有个服务器 怎样做网站百度app客服电话
  • wordpress随机切换主页内容优化网站搜索排名
  • 网站产品介绍长图哪个软件做的什么软件可以刷网站排名
  • 软件开发用的软件潍坊seo建站
  • cnzz网站代做荆门今日头条新闻发布
  • 怎样使用自己的电脑做网站google play服务
  • 网站上滚动条怎么做北京网站快速排名优化
  • 天天b2b电子商务网湖南竞价优化哪家好
  • 网站怎么注册啊应用关键词优化
  • 个人社保缴费多少钱一个月seo服务套餐
  • html5手机网站开发工具推广引流吸引人的文案
  • 网站开发纠纷案品牌营销推广要怎么做
  • 最好网站设计案例创建网站要钱吗