当前位置: 首页 > news >正文

怎样判断网站的好坏国外免费网站域名服务器查询软件

怎样判断网站的好坏,国外免费网站域名服务器查询软件,男女做啊免费视频网站,wordpress分类含有中文目录 1 虽然这是个很基础的知识,但是我觉得有必要记录下 2 整洁数据表 3 交叉数据表的2种形式 3.0 交叉表的名字 3.1 2维的交叉表 3.2 用2维表现3维的 3.3 上述内容,具体的markdown文本 4 交叉数据表 4.1 交叉数据表并不整洁 4.2 但是交叉表也…

目录

1 虽然这是个很基础的知识,但是我觉得有必要记录下

2 整洁数据表

3 交叉数据表的2种形式

3.0 交叉表的名字

3.1 2维的交叉表

3.2 用2维表现3维的

3.3 上述内容,具体的markdown文本

4 交叉数据表

4.1 交叉数据表并不整洁

4.2 但是交叉表也很有用:比如求 联合概率+边缘概率

4.3 总结

5 整洁数据表,可以直接pd.pivot_table()转化为交叉表

5.1 pd.pivot_table()  数据透视表公式

5.2 表虽然可以直接转,但是内容也需要合适


1 虽然这是个很基础的知识,但是我觉得有必要记录下

有些数据表很有问题,后导致后续的分析出问题,所以先检查和整理数据表是很有必要的一个步骤。

  • #混乱数据
  1. 数据混乱
  2. 有些甚至把一个单元格填多个数据
  3. 有些虽然看着很清晰,但数据结构混乱
  • #整洁数据
  1. 可读性比较强

2 整洁数据表

整洁数据表

这几个要求看起来很简单,但是有时候也容易忽视。

  • 1.每1列代表1个属性
  • 2.每1行代表1个样本(样本里包含多个数据)
  • 3.每一个单元格,代表1个具体数据
  • 4.每个类型的观察单元构成1个表格(不同类型的观察单元多个表格)
     

3 交叉数据表的2种形式

3.0 交叉表的名字

  • 交叉表
  • 交叉分类表
  • 也叫列联表

3.1 2维的交叉表

  • 常见的交叉表
  • 列:属性1 如颜色
  • 行:属性2 如 城市
  • 单元格,具体数据

3.2 用2维表现3维的

  • 实际上还是2维的
  • 因为我们很难真的表现1个3维表格,虽然理论上可以通过 XYZ这样的三维图表示
  • 其实,用2维表现3维的就是,列的属性,实际是2个维度,
  1. 列的维度1:上午,下午
  2. 列的更高维度,颜色

3.3 上述内容,具体的markdown文本

#混乱数据
数据混乱
有些甚至把一个单元格填多个数据
有些虽然看着很清晰,但数据结构混乱#整洁数据
可读性比较强##第1类表格:整洁数据表1.每1列代表1个属性
2.每1行代表1个样本(样本里包含多个数据)
3.每一个单元格,代表1个具体数据
4.每个类型的观察单元构成1个表格(不同类型的观察单元多个表格)序号|城市|颜色|销售量
----|----|----|----
1|北京|红色|98
2|北京|蓝色|90
3|上海|红色|86
4|上海|蓝色|95##第2类表格:数据交叉表二维城市\颜|红色|蓝色
----|----|----
北京|98|90
上海|86|95三维
交叉表|红色| 红色|蓝色| 蓝色
""|上午|下午|上午|下午
----|----|----|----|----
北京|48|50|40|50
上海|46|40|45|40

4 交叉数据表

4.1 交叉数据表并不整洁

  • 从整洁数据的定义上说,交叉数据表“并不整洁”
  • 原因:交叉数据表,往往是列表示一个属性,行也表示了一个属性
  • 行,并不只是一个行样本(多个数据的数组!)

4.2 但是交叉表也很有用:比如求 联合概率+边缘概率

  • 独立概率
  • 联合概率:独立概率1*独立概率2
  • 边缘概率:同1行 /同1列的所有联合概率相加的总和。
  1.  边缘概率分2种:行边缘概率,列边缘概率
  2.  为什么要全部相加?因为同1行/列 代表了所有的可能性,必须全加起来才=边缘概率
  3. (所有行的)Σ边缘概率和=1 = 总概率
  4. (所有列的)Σ边缘概率和=1= 总概率
  • (概率空间的)总概率=1

4.3 总结

  • 我的想法:
  • 整洁数据表:更底层:适合作为原始数据,输入后,进行各种分析
  • 各种上层的表现表形式:
  1. 交叉数据表,本身就是在整洁数据表的一种加工,是一种输出形式!
  2. 其他数据表表现形式

5 整洁数据表,可以直接pd.pivot_table()转化为交叉表

5.1 pd.pivot_table()  数据透视表公式

  •  pd.pivot_table(data=pd.Dataframe, values="单元格列名",aggfunc="sum新生成的求和列",index="横向的列名", columns="纵向的列名")
  • pd.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All')

参数说明:

  • 数据源
  • data:需要进行数据透视的DataFrame。pd.Dataframe
  • 数据源重组
  • values:用于聚合的列名,默认聚合所有数值列。"原表--单元格列名",
  • index:数据透视表的index,从原数据的列中筛选。"原表--横向的列名",
  • columns:数据透视表的columns,从原数据的列中筛选。"原表--纵向的列名"
  • 重组关键函数
  • aggfunc:用于聚合的函数,默认为’mean’,支持numpy的聚合函数。也可以是"sum"
  • 其他效果
  • fill_value:用于替换结果中的缺失值。
  • margins:添加行/列小计和总计,默认为False。
  • dropna:是否删除所有条目均为NA的列,默认为True。
  • margins_name:总计列的名称,默认为’All’。

sample_dataframe11=pd.DataFrame({"city":sample_array11,
                                "color":sample_array22,
                                 "sales":sample_array33,
                                })
 

#可以把np.Dataframe 直接转化为 交叉表/列联表
crosstable11=pd.pivot_table(data=sample_dataframe11,

                                                values="sales",

                                                 aggfunc="sum",

                                                 index="city",

                                                columns="color")

5.2 表虽然可以直接转,但是内容也需要合适

  • 把 “整洁数据表”转化为交叉表,虽然可以直接用pd.pivot_table(),但是表本身的内容也需要符合,适合转化为交叉表"
  • 例子1数据表本身不适合转化为交叉表,可以转,转完后格式比较奇怪,没啥意义"
  • 例子2:数据表本身很适合转化为交叉表,可以转,转完后很好"
import numpy as np
import pandas as pd
import scipy as sp
%precision 3print("#把 “整洁数据表”转化为交叉表,虽然可以直接用pd.pivot_table(),但是表本身的内容也需要符合,适合转化为交叉表")
print("#例子1数据表本身不适合转化为交叉表,可以转,转完后格式比较奇怪,没啥意义")sample_array1=np.array([1,2,3])
sample_array2=np.array([10,20,30])
sample_array3=np.array([100,200,300])# 注意pd.DataFrame 首字母一定大写
sample_dataframe1=pd.DataFrame({"city":sample_array1,"color":sample_array2,"sales":sample_array3,})
print(sample_dataframe1)
print()#可以把np.Dataframe 直接转化为 交叉表/列联表
crosstable1=pd.pivot_table(data=sample_dataframe1,values="sales",aggfunc="sum",index="city",columns="color")
print(crosstable1)
print()print("#例子2:数据表本身很适合转化为交叉表,可以转,转完后很好")
sample_array11=np.array(["beijing","beijing","shanghai","shanghai"])
sample_array22=np.array(["blue","red","blue","red"])
sample_array33=np.array([100,150,200,120])# 注意pd.DataFrame 首字母一定大写
sample_dataframe11=pd.DataFrame({"city":sample_array11,"color":sample_array22,"sales":sample_array33,})
print(sample_dataframe11)
print()#可以把np.Dataframe 直接转化为 交叉表/列联表
crosstable11=pd.pivot_table(data=sample_dataframe11,values="sales",aggfunc="sum",index="city",columns="color")
print(crosstable11)
print()

http://www.ritt.cn/news/2996.html

相关文章:

  • 做ae好的网站有哪些秦皇岛seo招聘
  • 做网站可以用别人的身份证吗怎么打广告宣传自己的产品
  • 网上卖货有哪些免费平台百度搜索关键词优化
  • 杭州网站外包西安seo服务商
  • 什么什么设计英文网站青岛的seo服务公司
  • c 语言能开发做网站吗海南网站制作公司
  • 微企免费网站建设搜索引擎优化宝典
  • 网站开发人员主要干什么的新闻博客软文自助推广
  • 谷哇网站建设网页版
  • 学生做网站怎么收费百度一下首页网页百度
  • 网络营销推广公司网站有哪些免费s站推广网站
  • 成都网站设计是什么seo优化公司信
  • 企业专业网站建设百度下载免费官方安装
  • 温州企业建站系统软文发布平台有哪些
  • 网站设计色彩搭配百度正版下载并安装
  • 常用来做网站首页的文件名网站建设问一问公司
  • app开发制作在哪儿搜索引擎优化的基本方法
  • 北京网站优化公司哪里稳定北京seo代理公司
  • 品牌建设 政府做什么seo搜索排名优化方法
  • 做论坛网站的应用谷歌浏览器下载手机版安卓官网
  • 南京市招办南京网站设计军事新闻最新24小时
  • 网站建设源码导入班级优化大师使用心得
  • 怎么提交网站十大小说网站排名
  • 无锡工程建设招标网站丁的老头seo博客
  • 那个网站招丑的人做网红注册网站查询
  • asp.net mvc 做网站长沙企业网站设计
  • 广州个人做网站百度推广怎么登陆
  • 做网站开发要装什么软件启动互联全网营销推广
  • 政府门户网站建设经验今天的新闻联播
  • 买奢侈品代工厂做的产品的网站名新网站如何快速收录