当前位置: 首页 > news >正文

请选择一个网站制作软件网站搜索引擎

请选择一个网站制作软件,网站搜索引擎,创做网站,沈阳网站托管公司在数据结构中,常见的排序算法有以下几种: 冒泡排序(Bubble Sort):通过比较相邻元素并交换它们的位置,每轮将最大(或最小)的元素冒泡到末尾,重复执行直到排序完成。 fun…

在数据结构中,常见的排序算法有以下几种:

  1. 冒泡排序(Bubble Sort):通过比较相邻元素并交换它们的位置,每轮将最大(或最小)的元素冒泡到末尾,重复执行直到排序完成。
function bubbleSort(arr) {const n = arr.length;for (let i = 0; i < n - 1; i++) {for (let j = 0; j < n - i - 1; j++) {if (arr[j] > arr[j + 1]) {[arr[j], arr[j + 1]] = [arr[j + 1], arr[j]];}}}return arr;
}const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(bubbleSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]

特点:简单易懂,但对于大型数据集效率较低。
时间复杂度:
最优情况:O(n)(当数组已经排序好时)。
平均情况:O(n^2)。
最坏情况:O(n^2)。

  1. 插入排序(Insertion Sort):将数组分为已排序和未排序两部分,每次从未排序部分选择一个元素插入到已排序部分的正确位置,重复执行直到排序完成。
function insertionSort(arr) {const n = arr.length;for (let i = 1; i < n; i++) {let key = arr[i];let j = i - 1;while (j >= 0 && arr[j] > key) {arr[j + 1] = arr[j];j--;}arr[j + 1] = key;}return arr;
}const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(insertionSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]

特点:适用于小型数据集和部分有序数组。
时间复杂度:
最优情况:O(n)(当数组已经排序好时)。
平均情况:O(n^2)。
最坏情况:O(n^2)。

  1. 选择排序(Selection Sort):每轮从未排序部分选择最小(或最大)的元素,将其与未排序部分的首元素交换,重复执行直到排序完成。
function selectionSort(arr) {const n = arr.length;for (let i = 0; i < n - 1; i++) {let minIdx = i;for (let j = i + 1; j < n; j++) {if (arr[j] < arr[minIdx]) {minIdx = j;}}[arr[i], arr[minIdx]] = [arr[minIdx], arr[i]];}return arr;
}const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(selectionSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]

特点:简单易懂,但对于大型数据集效率较低。
时间复杂度:
最优情况:O(n^2)。
平均情况:O(n^2)。
最坏情况:O(n^2)。

  1. 快速排序(Quick Sort):通过选取一个基准元素,将数组分成比基准元素小和大的两部分,然后递归地对两部分进行排序。
function quickSort(arr) {if (arr.length <= 1) return arr;const pivot = arr[0];const left = [];const right = [];for (let i = 1; i < arr.length; i++) {if (arr[i] < pivot) {left.push(arr[i]);} else {right.push(arr[i]);}}return [...quickSort(left), pivot, ...quickSort(right)];
}const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(quickSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]

特点:高效且被广泛使用的排序算法。
时间复杂度:
最优情况:O(n log n)。
平均情况:O(n log n)。
最坏情况:O(n^2)。

  1. 归并排序(Merge Sort):将数组不断分割成较小的子数组,然后再将子数组按顺序合并,重复执行直到排序完成。
function mergeSort(arr) {if (arr.length <= 1) return arr;const mid = Math.floor(arr.length / 2);const left = mergeSort(arr.slice(0, mid));const right = mergeSort(arr.slice(mid));return merge(left, right);
}function merge(left, right) {const mergedArr = [];let leftIdx = 0;let rightIdx = 0;while (leftIdx < left.length && rightIdx < right.length) {if (left[leftIdx] < right[rightIdx]) {mergedArr.push(left[leftIdx]);leftIdx++;} else {mergedArr.push(right[rightIdx]);rightIdx++;}}return [...mergedArr, ...left.slice(leftIdx), ...right.slice(rightIdx)];
}const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(mergeSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]

特点:稳定的排序算法,适用于大型数据集。
时间复杂度:
最优情况:O(n log n)。
平均情况:O(n log n)。
最坏情况:O(n log n)。

  1. 堆排序(Heap Sort):利用二叉堆(最大堆或最小堆)的特性进行排序,将堆顶元素与最后一个元素交换,然后重建堆,重复执行直到排序完成。
function heapSort(arr) {const n = arr.length;for (let i = Math.floor(n / 2) - 1; i >= 0; i--) {heapify(arr, n, i);}for (let i = n - 1; i >= 0; i--) {[arr[0], arr[i]] = [arr[i], arr[0]];heapify(arr, i, 0);}return arr;
}function heapify(arr, n, i) {let largest = i;const left = 2 * i + 1;const right = 2 * i + 2;if (left < n && arr[left] > arr[largest]) {largest = left;}if (right < n && arr[right] > arr[largest]) {largest = right;}if (largest !== i) {[arr[i], arr[largest]] = [arr[largest], arr[i]];heapify(arr, n, largest);}
}const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(heapSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]

特点:高效的原地排序算法。
时间复杂度:
最优情况:O(n log n)。
平均情况:O(n log n)。
最坏情况:O(n log n)。

  1. 希尔排序(Shell Sort):是插入排序的一种改进算法,通过分组进行插入排序,逐渐缩小分组间隔,直到分组间隔为1。
function shellSort(arr) {const n = arr.length;for (let gap = Math.floor(n / 2); gap > 0; gap = Math.floor(gap / 2)) {for (let i = gap; i < n; i++) {let temp = arr[i];let j;for (j = i; j >= gap && arr[j - gap] > temp; j -= gap) {arr[j] = arr[j - gap];}arr[j] = temp;}}return arr;
}const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(shellSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]

特点:插入排序的改进版本,适用于中等大小的数据集。
时间复杂度:
最优情况:O(n log^2 n)(取决于步长序列)。
平均情况:取决于步长序列。
最坏情况:取决于步长序列。

  1. 计数排序(Counting Sort):适用于一定范围内的整数排序,通过统计每个元素出现的次数,然后计算每个元素的位置,重复执行直到排序完成。
function countingSort(arr) {const n = arr.length;let max = Math.max(...arr);let min = Math.min(...arr);const range = max - min + 1;const count = Array(range).fill(0);const output = Array(n);for (let i = 0; i < n; i++) {count[arr[i] - min]++;}for (let i = 1; i < range; i++) {count[i] += count[i - 1];}for (let i = n - 1; i >= 0; i--) {output[count[arr[i] - min] - 1] = arr[i];count[arr[i] - min]--;}for (let i = 0; i < n; i++) {arr[i] = output[i];}return arr;
}const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(countingSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]

特点:适用于小范围整数排序。
时间复杂度:O(n + k),其中 n 是输入数组元素个数,k 是输入范围大小。

  1. 桶排序(Bucket Sort):将元素根据一定规则放入不同的桶中,每个桶内部进行排序,然后按顺序合并桶内的元素,重复执行直到排序完成。
function bucketSort(arr, bucketSize = 5) {if (arr.length === 0) return arr;const max = Math.max(...arr);const min = Math.min(...arr);const bucketCount = Math.floor((max - min) / bucketSize) + 1;const buckets = Array(bucketCount).fill().map(() => []);for (let i = 0; i < arr.length; i++) {const bucketIndex = Math.floor((arr[i] - min) / bucketSize);buckets[bucketIndex].push(arr[i]);}arr.length = 0;for (let i = 0; i < buckets.length; i++) {insertionSort(buckets[i]);arr.push(...buckets[i]);}return arr;
}const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(bucketSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]

特点:适用于均匀分布的数据。
时间复杂度:O(n + k),其中 n 是输入数组元素个数,k 是桶的个数。

  1. 基数排序(Radix Sort):按照位数将元素分配到不同的桶中,然后按顺序合并桶内的元素,重复执行直到所有位数排序完成。
function radixSort(arr) {const max = Math.max(...arr);const maxLength = String(max).length;let bucket = Array.from({ length: 10 }, () => []);for (let i = 0; i < maxLength; i++) {for (let j = 0; j < arr.length; j++) {const digit = Math.floor(arr[j] / 10 ** i) % 10;bucket[digit].push(arr[j]);}arr.length = 0;for (let k = 0; k < bucket.length; k++) {arr.push(...bucket[k]);bucket[k].length = 0;}}return arr;
}const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(radixSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]

特点:适用于数字位数相同的整数排序。
时间复杂度:O(d * (n + k)),其中 d 是最大数字的位数,n 是输入数组元素个数,k 是输入范围大小。

每种排序算法都有不同的时间复杂度和适用场景。在实际应用中,根据数据规模和性能要求选择合适的排序算法是很重要的。

http://www.ritt.cn/news/3768.html

相关文章:

  • 怎样做聊天网站代运营公司靠谱吗
  • 做wd网站实训报告总结seo的中文意思
  • 广州做网站公司哪家好百度经验首页登录官网
  • 中国化工建设公司官网宁波企业seo外包
  • wordpress手机边栏seo搜索引擎优化软件
  • 亿企邦网站建设百度seo是什么意思
  • 网站开发哪里培训好汕头网站建设开发
  • 电商设计师需要掌握什么技能网站优化排名金苹果系统
  • 怎样访问简版网站关键词数据分析工具有哪些
  • 网站的透明图片怎么做怎么请专业拓客团队
  • 有道翻译网站 做翻译百度投流运营
  • 饮料企业哪个网站做的比较好seo同行网站
  • 做网站和推广工资多少现在阳性最新情况
  • 如何做企业网站英文外链代发
  • 做网站能挣钱吗有效的网站推广方式
  • 厦门个人网站建设软文写作技巧及范文
  • 公司域名注册后怎么建设网站浙江百度查关键词排名
  • 网站设计的基本过程自学seo能找到工作吗
  • 济南多语言网站建设合肥今天的最新消息
  • 网站建设的源代码有什么作用网站推广的常用途径有哪些
  • 武汉电子商务公司有哪些seo诊断分析在线工具
  • 怎么进入企业的网站磁力屋torrentkitty
  • 课程网站模板活动营销推广方案
  • 做ppt模板的网站企业文化内容范本
  • 做微网站公司名称淘宝排名查询工具
  • 泸州做网站公司外贸网站营销推广
  • 易托管建站工具seo在线优化网站
  • 中国做铁塔的公司网站优化建站
  • 加盟网站制作发布新闻
  • 江西网站建设公司温州seo团队