当前位置: 首页 > news >正文

太原云起时网站建设福州网站建设

太原云起时网站建设,福州网站建设,网站开发主要技术,中国国际贸易网官网平台基础知识 FFT即快速傅里叶变换,利用周期性和可约性,减少了DFT的运算量。常见的有按时间抽取的基2算法(DIT-FFT)按频率抽取的基2算法(DIF-FFT)。 1.利用自带函数fft进行快速傅里叶变换 若已知序列x[4,3,2,6…

基础知识
FFT即快速傅里叶变换,利用周期性和可约性,减少了DFT的运算量。常见的有按时间抽取的基2算法(DIT-FFT)按频率抽取的基2算法(DIF-FFT)。

1.利用自带函数fft进行快速傅里叶变换
若已知序列x=[4,3,2,6,7,8,9,0]x=[4,3,2,6,7,8,9,0]x=[4,3,2,6,7,8,9,0],求X(k)=DFT[x(n)]X(k)=DFT[x(n)]X(k)=DFT[x(n)]
代码非常简单,只有两行

x=[4,3,2,6,7,8,9,0];
xk=fft(x)

在这里插入图片描述
一般,对MATLAB而言,要想让它显示出结果,计算的部分不要加分号。
2.绘制128点DFT的幅频图
已知信号由15Hz幅值0.5的正弦信号和40Hz幅值2的正弦信号组成,数据采样频率为100Hz,试绘制N=128点DFT的幅频图。
关于下列代码的解释

f=(0:N-1)'*fs/N;

其中(0:N-1)'是生成了一个长度为N,间隔为1的列向量转置所得到的行向量。fs/N是指频域上的频率间隔。
若N点序列x(n)(n=0,1,…,N-1)是在采样频率fs(Hz)下获得的。它的FFT也是N点序列,即X(k)(k=0,1,…,N-1),则第K点对应实际频率值为:
f=k*fs/N

clc;
fs=100;
Ts=1/fs;%采样时间间隔
N=128;
n=0:N-1;
t=n*Ts;    %x不是直接关于n的函数,因为是固定的采样时间点
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);y=fft(x,N);
f=(0:N-1)'*fs/N;
stem(f,abs(y));

运行结果
在这里插入图片描述
同时也可以可看到这个幅度谱是关于fN对称的。
3.利用FFT进行功率谱的噪声分析
已知带有测量噪声信号x(t)=sin(2πf1t)+sin(2πf2t)+2w(t)x(t)=sin(2πf1t)+sin(2πf2t)+2w(t)x(t)=sin(2πf1t)+sin(2πf2t)+2w(t) 其中f1=50Hz,f2=120Hz, w(t)为均值为零、方差为1的随机信号,采样频率为1000Hz,数据点数N=512。试绘制信号的功率谱图。
下面先介绍几个基本的函数和知识:
conj(Y)
conj(Y) 是 MATLAB 中的一个函数,表示对 Y 中的每个元素取其共轭复数。如果 Y 是一个实数数组,则返回其本身。在信号处理中,常常使用共轭复数进行频域变换的处理。
求功率
P=Y.*conj(Y)/512;
注意这里是点乘啊。
在信号处理中,功率可以表示为信号的平均能量。对于一个离散时间信号,其能量可以表示为其幅度平方的总和,即:
E=∑n=0N−1∣x[n]∣2E = \sum_{n=0}^{N-1} |x[n]|^2 E=n=0N1x[n]2
其中,NNN 是信号的抽样点数,x[n]x[n]x[n] 是信号在时刻 nnn 的采样值。这里的 ∣x[n]∣2|x[n]|^2x[n]2 表示对 x[n]x[n]x[n] 取模长平方。
如果要计算信号的平均功率,可以将其总能量除以抽样点数,即:
P=EN=1N∑n=0N−1∣x[n]∣2P = \frac{E}{N} = \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2 P=NE=N1n=0N1x[n]2
这里的 PPP 表示信号的功率。
在代码中,YYY 表示信号的离散傅里叶变换,即频域表示,其幅度 ∣Y∣|Y|Y 表示信号在每个频率分量上的贡献。为了计算信号的功率谱,需要将 YYY 变换为其幅度平方,即 ∣Y∣2|Y|^2Y2。由于 YYY 中包含了正频率和负频率的信息,因此需要对其进行共轭操作,即将负频率部分取共轭复数,然后再与正频率部分相乘,即 Y⋅conj⁡(Y)Y \cdot \operatorname{conj}(Y)Yconj(Y)。最后将结果除以抽样点数 NNN,即可得到功率谱 PPP
P=Y⋅conj⁡(Y)NP = \frac{Y \cdot \operatorname{conj}(Y)}{N} P=NYconj(Y)
这里的 PPP 是一个长度为 NNN 的向量,表示信号在每个频率分量上的功率。
randn
andn是MATLAB中的一个函数,用于生成一个均值为0,方差为1的标准正态分布随机数。例如,可以使用以下代码生成一个大小为3x3的标准正态分布随机矩阵:
A = randn(3,3);
完整代码

clc;
t=0:0.001:0.6;%设置步进与时间区间
x=sin(2*pi*50*t)+sin(2*pi*120*t);%根据已知写出信号的表达式
noise=randn(1,length(t));%生成均值为零、方差为1的随机信号,也就是噪声
y=x+noise;%带有噪声的信号
subplot(121);
plot(t,y);fs=1000;
Y=fft(y,512);%512点的FFT
P=Y.*conj(Y)/512;%求功率
f=(0:255)*fs/256%由上面的分析可知,频谱关于奈奎斯特频率对称,所以取其中一半
subplot(122);
plot(f,P(1:256))%功率随频率的变化,即功率谱图,绘制出一半

运行结果:
在这里插入图片描述
4.序列长度和FFT的长度对信号频谱的影响
已知信号 x(t)=0.5sin(2πf1t)+2sin(2πf2t)x(t)=0.5sin(2πf1t)+2sin(2πf2t)x(t)=0.5sin(2πf1t)+2sin(2πf2t)
其中f1=15Hz,f2=40Hz,采样频率为100Hz.
在下列情况下绘制其幅频谱。
有了前面的基础,这里就比较简单了
代码

nlength=32;
nfft1=32;
nfft2=128;
fs=100;
Ts=1/fs;
n=0:nlength-1;
t=n*Ts;x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);y1=fft(x,nfft1);
f1=(0:31)*fs/32;
subplot(211);
Y1=abs(y1);
plot(f1(1:16),Y1(1:16));y2=fft(x,nfft2);
f2=(0:127)*fs/128;
subplot(212);
Y2=abs(y2);
plot(f2(1:64),Y2(1:64));

运行结果
在这里插入图片描述
结果分析
采样点数越多,其频谱越光滑。
注意
绘制图形的时候,一定要分析清楚是频谱图,还是某一个变换,其目的在于分清谁是因变量,谁是自变量。

http://www.ritt.cn/news/4913.html

相关文章:

  • 简述建设一个网站的具体步骤潍坊网站建设方案咨询
  • 中山市企业网站seo哪家好百度知道客服
  • 个人网站设计模版html职业技能培训班
  • 甘肃网站备案审核百度平台推广
  • 新像素ui设计培训学校国内seo排名分析主要针对百度
  • 个性化网站如何引流客源最快的方法
  • wordpress点击数长沙百度网站推广优化
  • 网站审查备案软文是什么意思
  • 建筑材料价格查询网站百度收录申请
  • 天津做网站的网络公司网站seo应用
  • qq旺旺客服wordpress不能用360优化大师官网
  • 做公司网站别人能看到吗6上海最新事件
  • 做母婴产品哪个网站做的好处外包公司什么意思
  • 创建网站的基本流程什么叫百度竞价推广
  • 城乡住房建设厅网站100个成功营销案例
  • 网站建设网站制作需要多少钱2345网址导航怎么彻底删掉
  • wordpress avatar头像修正插件产品seo是什么意思
  • 怎么让百度搜到网站百度推广怎么优化关键词的质量
  • 做网站需要空间发布软文
  • 小米的网站是哪个公司做的海门网站建设
  • 手工制作地球仪的方法 材料南京seo整站优化技术
  • 做婚恋网站代理商挣钱吗广东深圳疫情最新消息今天
  • 建瓯企业网站建设莆田网站建设优化
  • 有教做翻糖的网站吗北京最新消息今天
  • 上海社区网站建设域名备案查询系统
  • 网站开发公司 经营范围营销型网站建设多少钱
  • 网络教育平台温州seo品牌优化软件
  • 哪些网站可以做视频直播南京百度快速排名优化
  • 长春生物和北京生物是一家吗seo专业培训费用
  • b2c购物平台南宁seo优化公司排名