当前位置: 首页 > news >正文

北京高级网站建设百度指数如何分析数据

北京高级网站建设,百度指数如何分析数据,工程建设项目招标,做网站公司需要多少钱这里写目录标题 1 图像加减乘除位运算1.1 加法 img cv2.add(img1, img2)1.2 减法 img cv2.subtract(img1, img2)1.3 乘法 img cv2.multiply(img1, img2)1.4 除法 img cv2.divide(img1, img2)1.5 位运算 cv2.bitwise_and() 2 图像增强2.1 线性变换2.2 非线性变换 3 图像几何…

这里写目录标题

    • 1 图像加减乘除位运算
      • 1.1 加法 img = cv2.add(img1, img2)
      • 1.2 减法 img = cv2.subtract(img1, img2)
      • 1.3 乘法 img = cv2.multiply(img1, img2)
      • 1.4 除法 img = cv2.divide(img1, img2)
      • 1.5 位运算 cv2.bitwise_and()
    • 2 图像增强
      • 2.1 线性变换
      • 2.2 非线性变换
    • 3 图像几何变换
      • 3.1 裁剪、放大、缩小
      • 3.2 平移变换
      • 3.3 错切变换
      • 3.4 镜像变换
      • 3.5 旋转变换
      • 3.6 透视变换
      • 3.7 最近邻插值、双线性插值

1 图像加减乘除位运算

1.1 加法 img = cv2.add(img1, img2)

import cv2
import numpy as np
import matplotlib.pyplot as pltlena = cv2.imread('lenacolor.png',-1)
noise = np.random.randint(0,255,lena.shape,dtype=np.uint8)
img_add = lena+noise
img_cv_add = cv2.add(lena,noise)plt.subplot(221)
plt.title('lena')
plt.imshow(lena[...,::-1])
plt.subplot(222)
plt.title('noise')
plt.imshow(noise[...,::-1])
plt.subplot(223)
plt.title('img_add')
plt.imshow(img_add[...,::-1])
plt.subplot(224)
plt.title('img_cv_add')
plt.imshow(img_cv_add[...,::-1])
plt.show()

在这里插入图片描述

1.2 减法 img = cv2.subtract(img1, img2)

import cv2
import numpy as np
import matplotlib.pyplot as pltimg_0 = cv2.imread('34.jpeg',-1)
img_1 = cv2.imread('35.jpeg',-1)
img_sub = cv2.subtract(img_0, img_1)plt.subplot(131)
plt.title('img_0')
plt.imshow(img_0[...,::-1])
plt.subplot(132)
plt.title('img_1')
plt.imshow(img_1[...,::-1])
plt.subplot(133)
plt.title('img_sub')
plt.imshow(img_sub[...,::-1])
plt.show()

在这里插入图片描述

import cv2
import numpy as np
import matplotlib.pyplot as pltimg_0 = cv2.imread('img_no.png',0)
img_1 = cv2.imread('sub.png',0)
img_sub = cv2.subtract(img_0, img_1)plt.subplot(131)
plt.title('img_0')
plt.imshow(img_0,cmap='gray')
plt.subplot(132)
plt.title('img_1')
plt.imshow(img_1,cmap='gray')
plt.subplot(133)
plt.title('img_sub')
plt.imshow(img_sub,cmap='gray')
plt.show()

在这里插入图片描述

1.3 乘法 img = cv2.multiply(img1, img2)

import cv2
import numpy as np
import matplotlib.pyplot as pltlena = cv2.imread('lenacolor.png',-1)
mask = np.zeros_like(lena,np.uint8)
mask[204:392,213:354] = 1
img_mul = cv2.multiply(lena, mask)plt.subplot(131)
plt.title('lena')
plt.imshow(lena[...,::-1])
plt.subplot(132)
plt.title('mask')
plt.imshow(mask[...,::-1])
plt.subplot(133)
plt.title('img_mul')
plt.imshow(img_mul[...,::-1])
plt.show()

在这里插入图片描述

1.4 除法 img = cv2.divide(img1, img2)

import cv2
import numpy as np
import matplotlib.pyplot as pltlena = cv2.imread('lenacolor.png',0)
img_noise = cv2.circle(lena.copy(),(280,300),150,(0,255,0),10)
img_div = cv2.divide(img_noise,lena)plt.subplot(131)
plt.title('lena')
plt.imshow(lena,cmap='gray')
plt.subplot(132)
plt.title('img_noise')
plt.imshow(img_noise,cmap='gray')
plt.subplot(133)
plt.title('img_div')
plt.imshow(img_div,cmap='gray')
plt.show()

在这里插入图片描述

1.5 位运算 cv2.bitwise_and()

import cv2
import numpy as np
import matplotlib.pyplot as pltlena = cv2.imread('lenacolor.png',1)
mask = np.zeros_like(lena,dtype=np.uint8)
mask = cv2.circle(mask,(280,280),111,(255,255,255),-1)
re = cv2.bitwise_and(lena,mask)plt.subplot(131)
plt.title('lena')
plt.imshow(lena[...,::-1])
plt.subplot(132)
plt.title('mask')
plt.imshow(mask[...,::-1])
plt.subplot(133)
plt.title('re')
plt.imshow(re[...,::-1])
plt.show()

在这里插入图片描述

import cv2
import numpy as np
import matplotlib.pyplot as pltlena = cv2.imread('lenacolor.png',1)
mask = np.zeros(lena.shape[:2],dtype=np.uint8)
mask = cv2.circle(mask,(280,280),111,(255,255,255),-1)
re = cv2.bitwise_and(lena,lena,mask=mask)plt.subplot(131)
plt.title('lena')
plt.imshow(lena[...,::-1])
plt.subplot(132)
plt.title('mask')
plt.imshow(mask,'gray')
plt.subplot(133)
plt.title('re')
plt.imshow(re[...,::-1])
plt.show()

在这里插入图片描述

2 图像增强

2.1 线性变换

import cv2
import numpy as np
import matplotlib.pyplot as pltimg = cv2.imread('lianhua.png',1)
re = img*2+10
re = re.astype(np.uint8)
re1 = cv2.convertScaleAbs(img, alpha=2, beta=10)plt.subplot(131)
plt.title('img')
plt.imshow(img[...,::-1])
plt.subplot(132)
plt.title('re0')
plt.imshow(re0[...,::-1])
plt.subplot(133)
plt.title('re1')
plt.imshow(re1[...,::-1])
plt.show()

在这里插入图片描述

2.2 非线性变换

import cv2
import numpy as np
import matplotlib.pyplot as plt## 1 gamma
def gamma_aug(img,c,gamma):gamma_table=[c*np.power(x/255.0,gamma)*255.0 for x in range(256)]gamma_table=np.round(np.array(gamma_table)).astype(np.uint8)return cv2.LUT(img,gamma_table)## 2 log
def log_aug(img,c,r):gamma_table=[c*np.log10(1+x/255.0*r)*255.0 for x in range(256)]gamma_table=np.round(np.array(gamma_table)).astype(np.uint8)return cv2.LUT(img,gamma_table)if __name__ == '__main__':img = cv2.imread('lianhua.png',1)img11 =  gamma_aug(img,c=1,gamma=0.1)img12 = gamma_aug(img, c=1, gamma=0.8)img21 = log_aug(img, c=1, r=10)img22 = log_aug(img, c=2, r=10)plt.subplot(231)plt.title('img')plt.imshow(img[...,::-1])plt.subplot(232)plt.title('img11')plt.imshow(img11[..., ::-1])plt.subplot(233)plt.title('img12')plt.imshow(img12[..., ::-1])plt.subplot(234)plt.title('img')plt.imshow(img[...,::-1])plt.subplot(235)plt.title('img21')plt.imshow(img21[..., ::-1])plt.subplot(236)plt.title('img22')plt.imshow(img22[..., ::-1])plt.show()

在这里插入图片描述

3 图像几何变换

3.1 裁剪、放大、缩小


3.2 平移变换


3.3 错切变换


3.4 镜像变换


3.5 旋转变换


3.6 透视变换


3.7 最近邻插值、双线性插值


http://www.ritt.cn/news/7063.html

相关文章:

  • 日照房产建设信息网站淘宝店铺转让价格表
  • WordPress导航菜单不显示采集站seo课程
  • 网站维护是不是很难做爱站网官网关键词
  • 网站建设营销词cms
  • 怎么给公司做简单网站企业广告宣传
  • 做高大上分析的网站北京seo技术
  • 北京企业网站建站哪家好qq群排名优化软件购买
  • 网站开发中的网页上传和网站发布seo网络推广软件
  • 网站打不开 别人能打开合肥网站关键词优化公司
  • 深圳网站建设服务找哪家春哥seo博客
  • 做网站什么空间好seo168小视频
  • 潍坊地区网站制作百度seo教程
  • 买域名做网站跳转点击排名优化
  • 网校网站开发长沙网站seo技术厂家
  • 天津网站搜索优化种子搜索神器
  • 石家庄制作公司网站百度seo软件
  • 局域网网站建设软件百度广告推广怎么做
  • 龙溪网站制作2022拉人头最暴利的app
  • 党建网站建设作为新产品怎样推广
  • 建设网站设计制作做网站怎么做
  • 怎样做网站链接百度竞价推广的技巧
  • 网站建设 竞标公司要求关键词的优化方法
  • 建立购物网站河北软文搜索引擎推广公司
  • 网站备案号申请百度竞价排名软件
  • 网站建设主要职责sem营销
  • 新公司做网站seosem是什么职位
  • 徐州网站制作需要多少钱企业员工培训课程
  • 三位数的域名网站灰色行业推广平台网站
  • wordpress集成tomcat站长之家seo查询官方网站
  • 番禺建设网站哪个好seo解释