当前位置: 首页 > news >正文

基于.net音乐网站开发全网热搜关键词排行榜

基于.net音乐网站开发,全网热搜关键词排行榜,dede新手做网站多久,微信商家小程序收费吗scikit-learn接口的分类器能够给出预测的不确定度估计,一般来说,分类器会预测一个测试点属于哪个类别,还包括它对这个预测的置信程度。 scikit-learn中有两个函数可以用于获取分类器的不确定度估计:decidion_function和predict_pr…

        scikit-learn接口的分类器能够给出预测的不确定度估计,一般来说,分类器会预测一个测试点属于哪个类别,还包括它对这个预测的置信程度。

        scikit-learn中有两个函数可以用于获取分类器的不确定度估计:decidion_function和predict_proba。

        以一个二维数据集为例:

import mglearn.tools
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.datasets import make_circles
import numpy as np
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as pltX,y=make_circles(noise=0.25,factor=0.5,random_state=1)y_named=np.array(['type0','type1'])[y]
#所有数组的划分方式都是一致的
X_train,X_test,y_train_named,y_test_named,y_train,y_test=train_test_split(X,y_named,y,random_state=0
)
#梯度提升模型
gbrt=GradientBoostingClassifier(random_state=0)
gbrt.fit(X_train,y_train_named)

        对于二分类的情况,decidion_function返回值的形状是(n_samples,),为每个样本都返回一个浮点数:

print('X_test形状:{}'.format(X_test.shape))
print('Decision_function 形状:{}'.format(gbrt.decision_function(X_test).shape))

对于类别1来说,值代表模型对数据点属于“正”类的置信程度。正值代表对正类的偏好,负值代表对反类的偏好,还可以通过查看决策值的正负号来展示预测值:

print('Decision_function:{}'.format(gbrt.decision_function(X_test)[:10]))
print('正负-Decision_function:{}'.format(gbrt.decision_function(X_test)>0))
print('分类:{}'.format(gbrt.predict(X_test)))

对于二分类问题,反类始终是classes_属性的第一个元素,正类是第二个元素,因此,如果想要完全再现predict的输出,需要利用classes_属性:

greater_zore=(gbrt.decision_function(X_test)>0).astype(int)
pred=gbrt.classes_[greater_zore]
print('索引是否与输出相同:{}'.format(np.all(pred==gbrt.predict(X_test))))

decidion_function可以在任意范围取值,取决于数据和参数模型:

decision_function=gbrt.decision_function(X_test)
print('decision_function结果的最大值和最小值:{:.3f}、{:.3f}'.format(np.max(decision_function),np.min(decision_function)))

利用颜色编码画出所有点的decidion_function,还有决策边界:

plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
fig,axes=plt.subplots(1,2,figsize=(13,5))
mglearn.tools.plot_2d_separator(gbrt,X,ax=axes[0],alpha=.4,fill=True,cm=mglearn.cm2)
scores_image=mglearn.tools.plot_2d_scores(gbrt,X,ax=axes[1],alpha=.4,cm=mglearn.ReBl)
for ax in axes:mglearn.discrete_scatter(X_test[:, 0], X_test[:, 1], y_test, markers='^', ax=ax)mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train, markers='o', ax=ax)ax.set_xlabel('特征0')ax.set_ylabel('特征1')
cbar=plt.colorbar(scores_image,ax=axes.tolist())
axes[0].legend(['测试分类0','测试分类1','训练分类0','训练分类1'],ncol=4,loc=(.1,1.1))
plt.show()

http://www.ritt.cn/news/7694.html

相关文章:

  • 网站建设计划书怎么写友情链接交换网址大全
  • golang做网站怎么样51link友链
  • 江西省住房建设部官方网站挖掘爱站网
  • wordpress内页php页面深圳搜索引擎优化seo
  • 做论坛网站怎么赚钱吗seo公司是什么
  • 公司注销预审在什么网站做产品故事软文案例
  • 一个专门做试题的网站seo长沙
  • 怎样制作网页超链接seo优化首页
  • 克拉玛依网站建设四年级2023新闻摘抄
  • 淄博网站优化推广sem竞价代运营公司
  • 网页网站怎么做的吗网络营销课程思政
  • 个人二级网站怎么做天津seo外包团队
  • 35互联做网站多少钱百度云网盘搜索引擎
  • 海淘哪些网站做攻略好网站诊断分析
  • 网站seo设计方案案例看广告赚钱
  • 电影采集网站流量seo怎么学
  • 手机网站建设官网电脑清理软件十大排名
  • 注册网站域名南宁百度关键词推广
  • 邦邻网站建设熊掌号网络广告营销
  • 南京哪里可以做网站做网站用哪个软件
  • 苏州网站建设流程优化措施最新回应
  • 用jsp做的网站的代码亚马逊的免费网站
  • 做网站时给网页增加提醒百度知道网页版
  • 视频软件观看免费高清下载seo的关键词无需
  • 怎么让网站被百度收录seo的工作内容
  • dw做网站怎么发布今日热点新闻2022
  • vi设计手册范本河南seo和网络推广
  • 做网站 备案口碑营销的前提及好处有哪些
  • 襄阳网站建设多少钱百度竞价关键词价格查询工具
  • 丰台深圳网站建设公司中国女排联赛排名