当前位置: 首页 > news >正文

做校园文化的网站网站模板免费下载

做校园文化的网站,网站模板免费下载,论吉林省网站职能建设,企业邮箱哪家安全目录 二叉树基础知识 概念 : 根节点的五个形态 : 特殊的二叉树 满二叉树 : 完全二叉树 : 二叉搜索树 : 平衡二叉搜索树 : 二叉树的性质 : 二叉树的存储结构 二叉树的顺序存储结构 二叉树的链式存储结构 二叉树的遍历方式 : 基础概念 前中后遍历 层序遍历 :…

目录

二叉树基础知识

概念 : 

根节点的五个形态 : 

特殊的二叉树

满二叉树 : 

 完全二叉树 : 

二叉搜索树  :

平衡二叉搜索树 : 

二叉树的性质 : 

二叉树的存储结构

二叉树的顺序存储结构

二叉树的链式存储结构

 二叉树的遍历方式 : 

基础概念

前中后遍历

 层序遍历 : 


二叉树基础知识

概念 : 

二叉树(binary tree)是指树中节点的度不大于2的有序树,它是一种最简单且最重要的树。二叉树的递归定义为:二叉树是一棵空树,或者是一棵由一个根节点和两棵互不相交的,分别称作根的左子树和右子树组成的非空树;左子树和右子树又同样都是二叉树。

根节点的五个形态 : 

  1. 空二叉树

  2. 只有一个根结点

  3. 根结点只有左子树

  4. 根结点只有右子树

  5. 根结点既有左子树又有右子树

特殊的二叉树

满二叉树 : 

概念 : 

如果一棵二叉树只有度为0的结点和度为2的结点,并且度为0的结点在同一层上,则这棵二叉树为满二叉树。

图例 : 

 完全二叉树 : 

概念 : 

        在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层(h从1开始),则该层包含 1~ 2^(h-1) 个节点。

图例 : 

 而

 这个就不是一颗完全二叉树!

二叉搜索树  :

前面介绍的树,都没有数值的,而二叉搜索树是有数值的了,二叉搜索树是一个有序树

  • 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  • 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  • 它的左、右子树也分别为二叉排序树

下面的就是一颗二叉搜索树;

 二叉搜索树最大的特点就是左<父<右 ;

平衡二叉搜索树 : 

又被称为AVL(Adelson-Velsky and Landis)树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

其中c++中的map、set、multimap,multiset的底层实现都是平衡二叉搜索树,所以map、set的增删操作时间时间复杂度是logn , 而unordered_map、unordered_set,unordered_map、unordered_set底层实现是哈希表。

二叉树的性质 : 

  1. 二叉树的第i层上至多有2 ^ (i-1)(i≥1)个节点。

  2. 深度为h的二叉树中至多含有2^h-1个节点

  3. 若在任意一棵二叉树中,有 n0 个叶子节点,有 n2 个度为2的节点,则必有n0 = n2 + 1

  4. 具有n个节点的完全二叉树深为log2(x) + 1(其中x表示不大于n的最大整数)

  5. 若对一棵有n个节点的完全二叉树进行顺序编号(1<=i<=n),那么,对于编号为i(i>=1)的节点:

    ⑴i =1 时,该节点为根,它无双亲节点 。

    ⑵ i > 1 时,该节点的双亲节点的编号为i/2 。

    ⑶2i<= n,则有编号为2i的左节点,否则没有左节点 。

    ⑷2i+1<=n ,则有编号为2i+1的右节点,否则没有右节点 。

二叉树的存储结构

二叉树可以顺序存储,也可以链式存储 ;

二叉树的顺序存储结构

二叉树的顺序存储结构就是用一维数组存储二叉树中的结点,并且结点的存储位置,也就是数组的下标要能体现结点之间的逻辑关系,比如双亲与孩子的关系,左右兄弟的关系等。

如以下这颗完全二叉树 : 

 可以采用以下线性表来存储:

下标12345678910
数据ABCDEFGHIJ

 如果父节点的数组下标是 i,那么它的左孩子就是 i * 2 + 1,右孩子就是 i * 2 + 2。

二叉树的链式存储结构

在链式结构中,一个二叉树的结点包含左孩子指针,数据,右孩子指针 ;

链式存储效果如图 : 

二叉链表的结构体定义 : 


typedef struct BiTNode
{TElemType data;  //数据域struct BiTNode *lchild,*rchild; //指针域
}BiTNode,*BiTree;

 二叉树的遍历方式 : 

基础概念

首先,主要的两种遍历方式为 : 

  1. 深度优先遍历:先往深走,遇到叶子节点再往回走。
  2. 广度优先遍历:一层一层的去遍历。

这两种遍历方法又可以细分 : 

  • 深度优先遍历
    • 前序遍历(递归法,迭代法)
    • 中序遍历(递归法,迭代法)
    • 后序遍历(递归法,迭代法)
  • 广度优先遍历
    • 层次遍历(迭代法)

前中后遍历

其中前中后三种结点的遍历顺序 如下 :

  • 前序遍历:中左右
  • 中序遍历:左中右
  • 后序遍历:左右中

图例 : 

 层序遍历 : 

从树的第一层开始访问,从上而下逐层遍历,在同一层中,按从左到右的顺序对结点逐个访问 ;

如下图 : 

 层序遍历的结果为 : 

ABCDEFGHI 

参考 : 

  1. 《大话数据结构》

  2. 《数据结构》C语言版(清华严蔚敏考研版)

  3. 【数据结构与算法】二叉树

  4. 代码随想录

http://www.ritt.cn/news/8378.html

相关文章:

  • 软件测试线上培训seo用什么工具
  • 老师找学生做网站是什么心态苏州网站seo服务
  • 电商网站建设技术青岛网站排名公司
  • 做网站前的准备什么软件福州seo按天付费
  • 开源wiki做网站重庆森林粤语完整版在线观看免费
  • 做网站学的是代码吗免费推广链接
  • 80 wordpress搜索引擎优化排名
  • 网站动画用什么做的免费做网站自助建站
  • 公司网站可以分两个域名做吗做个电商平台要多少钱
  • 个人备案 做网站游戏推广员到底犯不犯法
  • 北京好的网站设计公司网课培训机构排名前十
  • 做外贸公司网站重不重要杭州互联网公司排名榜
  • 注册一家设计公司流程网站推广优化业务
  • 阿里云能放企业网站吗微信朋友圈广告投放代理
  • 郑州个人做网站优化大师下载安装app
  • 龙岗成交型网站建设郑州网站建设方案优化
  • 简单公司网站模版营销网络图
  • 平面设计资源网站网络广告图片
  • 如何做网站测试营销软文是什么
  • 百度广告投放电话网站seo优化方案
  • 最好的外贸网站建设seo查询软件
  • 做网站的收入来源如何自己创建一个网站
  • 网站建设关键字北京seo站内优化
  • 怎么联系做网站公司看seo
  • 丰台网站建设联系方式seo优化诊断
  • 松原手机网站开发公司电话最新疫情19个城市封城
  • 手机报价网站大全抖音推广渠道有哪些
  • 郴州网站建设费用价格app优化排名
  • 微网站ui多少钱网站页面排名优化
  • 求职网东莞优化网站关键词优化