当前位置: 首页 > news >正文

大兴安岭做网站最新经济新闻

大兴安岭做网站,最新经济新闻,自己做视频网站的流程,吉林网站建设费用参数 全局指标 指标指标名称all_p99所有服务响应时间的 p99 值all_p95所有服务响应时间的 p95 值all_p90所有服务响应时间的 p90 值all_p75所有服务响应时间的 p75 值all_p70所有服务响应时间的 p70 值all_heatmap所有服务响应时间的热点图 服务指标 指标指标名称service_r…

参数

全局指标

指标指标名称
all_p99所有服务响应时间的 p99 值
all_p95所有服务响应时间的 p95 值
all_p90所有服务响应时间的 p90 值
all_p75所有服务响应时间的 p75 值
all_p70所有服务响应时间的 p70 值
all_heatmap所有服务响应时间的热点图

服务指标

指标指标名称
service_resp_time服务的平均响应时间
service_sla服务的成功率
service_p99服务响应时间的 p99 值
service_p95服务响应时间的 p95 值
service_p90服务响应时间的 p90 值
service_p75服务响应时间的 p75 值
service_p50服务响应时间的 p50 值

服务实例指标

指标指标名称
service_instance_sla服务实例的成功率
service_instance_resp_time服务实例的平均响应时间
service_instance_cpm服务实例每分钟调⽤次数

端点指标

指标指标名称
endpoint_cpm端点每分钟调⽤次数
endpoint_avg,端点平均响应时间
endpoint_sla,端点成功率
endpoint_p99端点响应时间的 p99 值
endpoint_p95
endpoint_p90
endpoint_p75
endpoint_p50

JVM指标

指标指标名称
instance_jvm_cpu
instance_jvm_memory_heap
instance_jvm_memory_noheap
instance_jvm_memory_heap_max
instance_jvm_memory_noheap_max
instance_jvm_young_gc_time
instance_jvm_old_gc_time

服务关系指标

指标指标名称
service_relation_client_cpm在客户端每分钟检测到的调⽤次数
service_relation_server_cpm在服务端每分钟检测到的调⽤次数
service_relation_client_call_sla在客户端检测到的成功率
service_relation_server_call_sla在服务端检测到的成功率
service_relation_client_resp_time在客户端检测到的平均响应时间
service_relation_server_resp_time在服务端检测到的平均响应时间
service_relation_client_cpm在客户端每分钟检测到的调⽤次数
service_relation_server_cpm在服务端每分钟检测到的调⽤次数

端点关系指标

指标指标名称
endpoint_relation_cpm
endpoint_relation_resp_time

其他关键指标

指标指标名称
CPM每分钟请求调⽤的次数
SLA⽹站服务可⽤性(主要是通过请求成功与失败次数来计算),9越多代表全年服务可⽤时间越长服务更可靠,停机 时间越短
CLR(公共语⾔运⾏库)在运⾏期管理程序的执⾏:主要包含:内存管理、代码安全验证、代码执⾏、垃圾收集。CLR 有⼀项服务称为GC(Garbage Collector,垃圾收集),它能为你⾃动管理内存。GC⾃动从内存中删除程序不再访问的 对象,GC是程序员不再操⼼许多以前必须执⾏的任务,⽐如释放内存和检查内存泄漏。
百分位数skywalking中有P50,P90,P95这种统计⼝径,就是百分位数的概念

内置方法参数

以下内容都是出自SkyWalking官方git

service_resp_time = from(Service.latency).longAvg();
service_sla = from(Service.*).percent(status == true);
service_cpm = from(Service.*).cpm();
service_percentile = from(Service.latency).percentile(10); // Multiple values including p50, p75, p90, p95, p99
service_apdex = from(Service.latency).apdex(name, status);
service_mq_consume_count = from(Service.*).filter(type == RequestType.MQ).count();
service_mq_consume_latency = from((str->long)Service.tag["transmission.latency"]).filter(type == RequestType.MQ).filter(tag["transmission.latency"] != null).longAvg();// Service relation scope metrics for topology
service_relation_client_cpm = from(ServiceRelation.*).filter(detectPoint == DetectPoint.CLIENT).cpm();
service_relation_server_cpm = from(ServiceRelation.*).filter(detectPoint == DetectPoint.SERVER).cpm();
service_relation_client_call_sla = from(ServiceRelation.*).filter(detectPoint == DetectPoint.CLIENT).percent(status == true);
service_relation_server_call_sla = from(ServiceRelation.*).filter(detectPoint == DetectPoint.SERVER).percent(status == true);
service_relation_client_resp_time = from(ServiceRelation.latency).filter(detectPoint == DetectPoint.CLIENT).longAvg();
service_relation_server_resp_time = from(ServiceRelation.latency).filter(detectPoint == DetectPoint.SERVER).longAvg();
service_relation_client_percentile = from(ServiceRelation.latency).filter(detectPoint == DetectPoint.CLIENT).percentile(10); // Multiple values including p50, p75, p90, p95, p99
service_relation_server_percentile = from(ServiceRelation.latency).filter(detectPoint == DetectPoint.SERVER).percentile(10); // Multiple values including p50, p75, p90, p95, p99// Service Instance relation scope metrics for topology
service_instance_relation_client_cpm = from(ServiceInstanceRelation.*).filter(detectPoint == DetectPoint.CLIENT).cpm();
service_instance_relation_server_cpm = from(ServiceInstanceRelation.*).filter(detectPoint == DetectPoint.SERVER).cpm();
service_instance_relation_client_call_sla = from(ServiceInstanceRelation.*).filter(detectPoint == DetectPoint.CLIENT).percent(status == true);
service_instance_relation_server_call_sla = from(ServiceInstanceRelation.*).filter(detectPoint == DetectPoint.SERVER).percent(status == true);
service_instance_relation_client_resp_time = from(ServiceInstanceRelation.latency).filter(detectPoint == DetectPoint.CLIENT).longAvg();
service_instance_relation_server_resp_time = from(ServiceInstanceRelation.latency).filter(detectPoint == DetectPoint.SERVER).longAvg();
service_instance_relation_client_percentile = from(ServiceInstanceRelation.latency).filter(detectPoint == DetectPoint.CLIENT).percentile(10); // Multiple values including p50, p75, p90, p95, p99
service_instance_relation_server_percentile = from(ServiceInstanceRelation.latency).filter(detectPoint == DetectPoint.SERVER).percentile(10); // Multiple values including p50, p75, p90, p95, p99// Service Instance Scope metrics
service_instance_sla = from(ServiceInstance.*).percent(status == true);
service_instance_resp_time = from(ServiceInstance.latency).longAvg();
service_instance_cpm = from(ServiceInstance.*).cpm();// Endpoint scope metrics
endpoint_cpm = from(Endpoint.*).cpm();
endpoint_resp_time = from(Endpoint.latency).longAvg();
endpoint_sla = from(Endpoint.*).percent(status == true);
endpoint_percentile = from(Endpoint.latency).percentile(10); // Multiple values including p50, p75, p90, p95, p99
endpoint_mq_consume_latency = from((str->long)Endpoint.tag["transmission.latency"]).filter(type == RequestType.MQ).filter(tag["transmission.latency"] != null).longAvg();// Endpoint relation scope metrics
endpoint_relation_cpm = from(EndpointRelation.*).filter(detectPoint == DetectPoint.SERVER).cpm();
endpoint_relation_resp_time = from(EndpointRelation.rpcLatency).filter(detectPoint == DetectPoint.SERVER).longAvg();
endpoint_relation_sla = from(EndpointRelation.*).filter(detectPoint == DetectPoint.SERVER).percent(status == true);
endpoint_relation_percentile = from(EndpointRelation.rpcLatency).filter(detectPoint == DetectPoint.SERVER).percentile(10); // Multiple values including p50, p75, p90, p95, p99database_access_resp_time = from(DatabaseAccess.latency).longAvg();
database_access_sla = from(DatabaseAccess.*).percent(status == true);
database_access_cpm = from(DatabaseAccess.*).cpm();
database_access_percentile = from(DatabaseAccess.latency).percentile(10);cache_read_resp_time = from(CacheAccess.latency).filter(operation == VirtualCacheOperation.Read).longAvg();
cache_read_sla = from(CacheAccess.*).filter(operation == VirtualCacheOperation.Read).percent(status == true);
cache_read_cpm = from(CacheAccess.*).filter(operation == VirtualCacheOperation.Read).cpm();
cache_read_percentile = from(CacheAccess.latency).filter(operation == VirtualCacheOperation.Read).percentile(10);cache_write_resp_time = from(CacheAccess.latency).filter(operation == VirtualCacheOperation.Write).longAvg();
cache_write_sla = from(CacheAccess.*).filter(operation == VirtualCacheOperation.Write).percent(status == true);
cache_write_cpm = from(CacheAccess.*).filter(operation == VirtualCacheOperation.Write).cpm();
cache_write_percentile = from(CacheAccess.latency).filter(operation == VirtualCacheOperation.Write).percentile(10);cache_access_resp_time = from(CacheAccess.latency).longAvg();
cache_access_sla = from(CacheAccess.*).percent(status == true);
cache_access_cpm = from(CacheAccess.*).cpm();
cache_access_percentile = from(CacheAccess.latency).percentile(10);mq_service_consume_cpm = from(MQAccess.*).filter(operation == MQOperation.Consume).cpm();
mq_service_consume_sla = from(MQAccess.*).filter(operation == MQOperation.Consume).percent(status == true);
mq_service_consume_latency = from(MQAccess.transmissionLatency).filter(operation == MQOperation.Consume).longAvg();
mq_service_consume_percentile = from(MQAccess.transmissionLatency).filter(operation == MQOperation.Consume).percentile(10);
mq_service_produce_cpm = from(MQAccess.*).filter(operation == MQOperation.Produce).cpm();
mq_service_produce_sla = from(MQAccess.*).filter(operation == MQOperation.Produce).percent(status == true);mq_endpoint_consume_cpm = from(MQEndpointAccess.*).filter(operation == MQOperation.Consume).cpm();
mq_endpoint_consume_latency = from(MQEndpointAccess.transmissionLatency).filter(operation == MQOperation.Consume).longAvg();
mq_endpoint_consume_percentile = from(MQEndpointAccess.transmissionLatency).filter(operation == MQOperation.Consume).percentile(10);
mq_endpoint_consume_sla = from(MQEndpointAccess.*).filter(operation == MQOperation.Consume).percent(status == true);
mq_endpoint_produce_cpm = from(MQEndpointAccess.*).filter(operation == MQOperation.Produce).cpm();
mq_endpoint_produce_sla = from(MQEndpointAccess.*).filter(operation == MQOperation.Produce).percent(status == true);

titles

{// General Servicegeneral_service: "常规服务",general_service_desc: "通过从SkyWalking代理收集的遥测数据来观察服务和相对直接的依赖关系。",general_service_services: "服务",general_service_services_desc: "通过SkyWalking Agent收集的遥测数据观察服务。",general_service_virtual_database: "虚拟数据库",general_service_virtual_database_desc: "观察语言代理通过各种插件推测的虚拟数据库。",general_service_virtual_cache: "虚拟缓存",general_service_virtual_cache_desc: "观察语言代理通过各种插件推测的虚拟缓存服务器。",general_service_virtual_mq: "虚拟消息队列",general_service_virtual_mq_desc: "观察语言代理通过各种插件推测的虚拟消息队列服务器。",// Service Meshservice_mesh: "服务网格",service_mesh_desc: "服务网格(Istio)通过分布式或微服务架构解决了开发人员和运营商面临的挑战。",service_mesh_service: "服务",service_mesh_service_desc: "通过从Envoy访问日志服务(ALS)收集的遥测数据观察服务网格。",service_mesh_control_plane: "控制平面",service_mesh_control_plane_desc: "通过Istio的自我监控指标提供对其行为的监控。",service_mesh_data_plane: "数据平面",service_mesh_data_plane_desc: "通过Envoy Metrics Service观察Envoy Proxy。",// Functionsfunctions: "Functions",functions_desc:"FaaS(功能即服务)是一种云计算服务,允许您在没有通常与构建和启动微服务应用程序相关的复杂基础设施的情况下执行代码以响应事件。",functions_openfunction: "OpenFunction",functions_openfunction_desc: "OpenFunction作为一个FaaS平台,通过SkyWalking集成提供开箱即用的可观察性。",// Kuberneteskubernetes: "Kubernetes",kubernetes_desc: "Kubernetes是一个开源的容器编排系统,用于自动化软件部署、扩展和管理。",kubernetes_cluster: "集群",kubernetes_cluster_desc: "提供对K8S集群的状态和资源的监控。",kubernetes_service: "服务",kubernetes_service_desc: "从Kubernetes中观察服务状态和资源。",// Infrastructureinfrastructure: "基础设施",infrastructure_desc: "操作系统是整个IT系统的基础设施。它的可观察性为所有分布式和现代复杂系统的运行提供了基础。",infrastructure_linux: "Linux",infrastructure_linux_desc: "提供Linux操作系统(OS)监控。",infrastructure_windows: "Windows",infrastructure_windows_desc: "提供Windows操作系统(OS)监控。",// AWS Cloudaws_cloud: "AWS云服务",aws_cloud_desc: "亚马逊网络服务(AWS)提供可靠、可扩展且价格低廉的云计算服务。",aws_cloud_eks: "EKS",aws_cloud_eks_desc: "通过AWS Container Insights Receiver提供AWS Cloud EKS监控。",aws_cloud_s3: "S3",aws_cloud_s3_desc: "通过AWS FireHose Receiver提供AWS Cloud S3监控",aws_cloud_dynamodb: "DynamoDB",aws_cloud_dynamodb_desc: "通过AWS FireHose Receiver提供DynamoDB监控。",aws_cloud_api_gateway: "API Gateway",aws_cloud_api_gateway_desc: "通过AWS FireHose Receiver提供AWS Cloud API网关监控。",// Browserbrowser: "Browser",browser_desc: "通过Apache SkyWalking Client JS提供Web应用程序、版本和页面的浏览器端监控。",// Gatewaygateway: "网关",gateway_desc: "API网关是位于客户端和后端服务集合之间的API管理工具。",gateway_apisix: "APISIX",gateway_apisix_desc: "通过OpenTelemetry的Prometheus接收器提供APISIX监控。",gateway_aws_api_gateway: "AWS API Gateway",gateway_aws_api_gateway_desc: "通过AWS FireHose Receiver提供AWS Cloud API网关监控。",// Databasedatabase: "数据库",database_desc: "数据库是结构化信息或数据的有组织的集合,通常以电子方式存储在计算机系统中。",database_mysql_mariadb: "MySQL/MariaDB",database_mysql_mariadb_desc: "通过OpenTelemetry的Prometheus接收器提供MySQL和MariaDB服务器监控。",database_postgresql: "PostgreSQL",database_postgresql_desc: "通过OpenTelemetry的Prometheus接收器提供PostgreSQL监控。",database_dynamodb: "DynamoDB",database_dynamodb_desc: "通过AWS FireHose Receiver提供DynamoDB监控。",database_redis: "Redis",database_redis_desc: "通过OpenTelemetry的Prometheus接收器提供Redis监控。",database_elasticsearch: "Elasticsearch",database_elasticsearch_desc: "通过OpenTelemetry的Prometheus接收器提供Elasticsearch服务器监控。",database_mongodb: "MongoDB",database_mongodb_desc: "通过OpenTelemetry的Prometheus接收器提供MongoDB监控。",// Message Queuemq: "消息队列",mq_desc: "消息队列是无服务器和微服务架构中使用的异步服务对服务通信的一种形式。",mq_rabbitmq: "RabbitMQ",mq_rabbitmq_desc: "通过OpenTelemetry的Prometheus接收器提供RabbitMQ监控。",// self observabilityself_observability: "自监控",self_observability_desc: "自观察性为运行SkyWalking生态系统中的组件和服务器提供了可观察性。",self_observability_oap: "SkyWalking服务",self_observability_oap_desc: "OAP后端集群本身是一个分布式流处理系统,这是对OAP后端本身的监控。",self_observability_satellite: "Satellite",self_observability_satellite_desc:"Satellite:为云原生基础设施设计的开源代理,提供了一种低成本、高效、更安全的遥测数据收集方式。它是遥测采集的推荐负载均衡器。",
}
http://www.ritt.cn/news/13178.html

相关文章:

  • 域名停靠软件应用下载官网优化包括什么内容
  • 江苏经营性网站备案搜易网服务介绍
  • 内丘网站建设可以发外链的网站整理
  • 网监关闭的网站怎么恢复云南网络营销公司哪家好
  • 网页设计最牛的网站建设哪有培训seo
  • 网络营销型网站建设的内容黑帽seo是作弊手法
  • 沧州网站建设运营公司手机百度2022年新版本下载
  • 网站默认地区数据修改营销团队外包
  • 15.下面对网站结构描述正确的是( )网络营销比较好的企业
  • 做爰动态视频网站网络推广的网站有哪些
  • 做公司集团网站怎么联系百度人工客服
  • 网站logo怎么修改企业线上培训平台
  • 网站域名过期未续费怎么办百度广告开户流程
  • 河南中英网站建设品牌营销推广方案
  • 网站可以跟博客做互链吗湖南企业seo优化推荐
  • 专业的网站建设企业百度首页百度
  • 帮别人做诈骗网站技术seo关键词优化如何
  • 网站开发人员工具种类网页
  • 酒店网站建设的基本内容友情链接模板
  • 哪个网站有做视频转场的素材重庆森林影评
  • 如何做论坛网站 知乎流程优化四个方法
  • 武汉响应式网站建设seo视频教程百度网盘
  • 荣耀商城佛山seo教程
  • 微网站 具有哪方面的优势免费培训机构
  • wordpress查版本号seo01
  • 信用信息查询公示系统seo专员岗位职责
  • 西安营销型网站制作价格最全bt磁力搜索引擎索引
  • 那些网站做的比较好网站排名优化培训
  • 电子商务网站建设需要什么如何创建网站平台
  • 做美工需要知道的设计网站谷歌浏览器手机版免费官方下载