当前位置: 首页 > news >正文

建设系统百度优化是什么意思

建设系统,百度优化是什么意思,利用新冠消灭老年人,中国工业设计十佳公司学习参考来自 使用CNN在MNIST上实现简单的攻击样本https://github.com/wmn7/ML_Practice/blob/master/2019_06_03/CNN_MNIST%E5%8F%AF%E8%A7%86%E5%8C%96.ipynb 文章目录 在 MNIST 上实现简单的攻击样本1 训练一个数字分类网络2 控制输出的概率, 看输入是什么3 让正确的图片分…

在这里插入图片描述

学习参考来自

  • 使用CNN在MNIST上实现简单的攻击样本
  • https://github.com/wmn7/ML_Practice/blob/master/2019_06_03/CNN_MNIST%E5%8F%AF%E8%A7%86%E5%8C%96.ipynb

文章目录

  • 在 MNIST 上实现简单的攻击样本
    • 1 训练一个数字分类网络
    • 2 控制输出的概率, 看输入是什么
    • 3 让正确的图片分类错误


在 MNIST 上实现简单的攻击样本

要看某个filter在检测什么,我们让通过其后的输出激活值较大。

想要一些攻击样本,有一个简单的想法就是让最后结果中是某一类的概率值变大,接着进行反向传播(固定住网络的参数),去修改input

原理图:

在这里插入图片描述

1 训练一个数字分类网络

模型基础数据、超参数的配置

import time
import csv, osimport PIL.Image
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import cv2
from cv2 import resizeimport torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data.sampler import SubsetRandomSampler
from torch.autograd import Variableimport copy
import torchvision
import torchvision.transforms as transforms
os.environ["CUDA_VISIBLE_DEVICES"] = "1"# --------------------
# Device configuration
# --------------------
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')# ----------------
# Hyper-parameters
# ----------------
num_classes = 10
num_epochs = 3
batch_size = 100
validation_split = 0.05 # 每次训练集中选出10%作为验证集
learning_rate = 0.001# -------------
# MNIST dataset
# -------------
train_dataset = torchvision.datasets.MNIST(root='./',train=True,transform=transforms.ToTensor(),download=True)test_dataset = torchvision.datasets.MNIST(root='./',train=False,transform=transforms.ToTensor())
# -----------
# Data loader
# -----------
test_len = len(test_dataset) # 计算测试集的个数 10000
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,batch_size=batch_size,shuffle=False)for (inputs, labels) in test_loader:print(inputs.size())  # [100, 1, 28, 28]print(labels.size())  # [100]break# ------------------
# 下面切分validation
# ------------------
dataset_len = len(train_dataset) # 60000
indices = list(range(dataset_len))
# Randomly splitting indices:
val_len = int(np.floor(validation_split * dataset_len)) # validation的长度
validation_idx = np.random.choice(indices, size=val_len, replace=False) # validatiuon的index
train_idx = list(set(indices) - set(validation_idx)) # train的index
## Defining the samplers for each phase based on the random indices:
train_sampler = SubsetRandomSampler(train_idx)
validation_sampler = SubsetRandomSampler(validation_idx)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,sampler=train_sampler,batch_size=batch_size)
validation_loader = torch.utils.data.DataLoader(train_dataset,sampler=validation_sampler,batch_size=batch_size)
train_dataloaders = {"train": train_loader, "val": validation_loader} # 使用字典的方式进行保存
train_datalengths = {"train": len(train_idx), "val": val_len} # 保存train和validation的长度

搭建简单的神经网络

# -------------------------------------------------------
# Convolutional neural network (two convolutional layers)
# -------------------------------------------------------
class ConvNet(nn.Module):def __init__(self, num_classes=10):super(ConvNet, self).__init__()self.layer1 = nn.Sequential(nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=2),nn.BatchNorm2d(16),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2))self.layer2 = nn.Sequential(nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5, stride=1, padding=2),nn.BatchNorm2d(32),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2))self.fc = nn.Linear(7*7*32, num_classes)def forward(self, x):out = self.layer1(x)out = self.layer2(out)out = out.reshape(out.size(0), -1)out = self.fc(out)return out

绘制损失和精度变化曲线

# -----------
# draw losses
# -----------
def draw_loss_acc(train_list, validation_list, mode="loss"):plt.style.use("seaborn")# set interdata_len = len(train_list)x_ticks = np.arange(1, data_len + 1)plt.xticks(x_ticks)if mode == "Loss":plt.plot(x_ticks, train_list, label="Train Loss")plt.plot(x_ticks, validation_list, label="Validation Loss")plt.xlabel("Epoch")plt.ylabel("Loss")plt.legend()plt.savefig("Epoch_loss.jpg")elif mode == "Accuracy":plt.plot(x_ticks, train_list, label="Train AccuracyAccuracy")plt.plot(x_ticks, validation_list, label="Validation Accuracy")plt.xlabel("Epoch")plt.ylabel("Accuracy")plt.legend()plt.savefig("Epoch_Accuracy.jpg")

定义训练模型的函数

# ---------------
# Train the model
# ---------------
def train_model(model, criterion, optimizer, dataloaders, train_datalengths, scheduler=None, num_epochs=2):"""传入的参数分别是:1. model:定义的模型结构2. criterion:损失函数3. optimizer:优化器4. dataloaders:training dataset5. train_datalengths:train set和validation set的大小, 为了计算准确率6. scheduler:lr的更新策略7. num_epochs:训练的epochs"""since = time.time()# 保存最好一次的模型参数和最好的准确率best_model_wts = copy.deepcopy(model.state_dict())best_acc = 0.0train_loss = []  # 记录每一个epoch后的train的losstrain_acc = []validation_loss = []validation_acc = []for epoch in range(num_epochs):print('Epoch [{}/{}]'.format(epoch + 1, num_epochs))print('-' * 10)# Each epoch has a training and validation phasefor phase in ['train', 'val']:if phase == 'train':if scheduler != None:scheduler.step()model.train()  # Set model to training modeelse:model.eval()  # Set model to evaluate moderunning_loss = 0.0  # 这个是一个epoch积累一次running_corrects = 0  # 这个是一个epoch积累一次# Iterate over data.total_step = len(dataloaders[phase])for i, (inputs, labels) in enumerate(dataloaders[phase]):# inputs = inputs.reshape(-1, 28*28).to(device)inputs = inputs.to(device)labels = labels.to(device)# zero the parameter gradientsoptimizer.zero_grad()# forward# track history if only in trainwith torch.set_grad_enabled(phase == 'train'):outputs = model(inputs)_, preds = torch.max(outputs, 1)  # 使用output(概率)得到预测loss = criterion(outputs, labels)  # 使用output计算误差# backward + optimize only if in training phaseif phase == 'train':loss.backward()optimizer.step()# statisticsrunning_loss += loss.item() * inputs.size(0)running_corrects += torch.sum(preds == labels.data)if (i + 1) % 100 == 0:# 这里相当于是i*batch_size的样本个数打印一次, i*100iteration_loss = loss.item() / inputs.size(0)iteration_acc = 100 * torch.sum(preds == labels.data).item() / len(preds)print('Mode {}, Epoch [{}/{}], Step [{}/{}], Accuracy: {}, Loss: {:.4f}'.format(phase, epoch + 1,num_epochs, i + 1,total_step,iteration_acc,iteration_loss))epoch_loss = running_loss / train_datalengths[phase]epoch_acc = running_corrects.double() / train_datalengths[phase]if phase == 'train':train_loss.append(epoch_loss)train_acc.append(epoch_acc)else:validation_loss.append(epoch_loss)validation_acc.append(epoch_acc)print('*' * 10)print('Mode: [{}], Loss: {:.4f}, Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))print('*' * 10)# deep copy the modelif phase == 'val' and epoch_acc > best_acc:best_acc = epoch_accbest_model_wts = copy.deepcopy(model.state_dict())print()time_elapsed = time.time() - sinceprint('*' * 10)print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))print('Best val Acc: {:4f}'.format(best_acc))print('*' * 10)# load best model weightsfinal_model = copy.deepcopy(model)  # 最后得到的modelmodel.load_state_dict(best_model_wts)  # 在验证集上最好的modeldraw_loss_acc(train_list=train_loss, validation_list=validation_loss, mode='Loss')  # 绘制Loss图像draw_loss_acc(train_list=train_acc, validation_list=validation_acc, mode='Accuracy')  # 绘制准确率图像return (model, final_model)

开始训练,并保存模型

if __name__ == "__main__":# 模型初始化model = ConvNet(num_classes=num_classes).to(device)# 打印模型结构#print(model)"""ConvNet((layer1): Sequential((0): Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU()(3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))(layer2): Sequential((0): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU()(3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))(fc): Linear(in_features=1568, out_features=10, bias=True))"""# -------------------# Loss and optimizer# ------------------criterion = nn.CrossEntropyLoss()optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)# -------------# 进行模型的训练# -------------(best_model, final_model) = train_model(model=model, criterion=criterion, optimizer=optimizer,dataloaders=train_dataloaders, train_datalengths=train_datalengths,num_epochs=num_epochs)"""Epoch [1/3]----------Mode train, Epoch [1/3], Step [100/570], Accuracy: 96.0, Loss: 0.0012Mode train, Epoch [1/3], Step [200/570], Accuracy: 96.0, Loss: 0.0011Mode train, Epoch [1/3], Step [300/570], Accuracy: 100.0, Loss: 0.0004Mode train, Epoch [1/3], Step [400/570], Accuracy: 100.0, Loss: 0.0003Mode train, Epoch [1/3], Step [500/570], Accuracy: 96.0, Loss: 0.0010**********Mode: [train], Loss: 0.1472, Acc: 0.9579********************Mode: [val], Loss: 0.0653, Acc: 0.9810**********Epoch [2/3]----------Mode train, Epoch [2/3], Step [100/570], Accuracy: 99.0, Loss: 0.0005Mode train, Epoch [2/3], Step [200/570], Accuracy: 98.0, Loss: 0.0003Mode train, Epoch [2/3], Step [300/570], Accuracy: 98.0, Loss: 0.0003Mode train, Epoch [2/3], Step [400/570], Accuracy: 97.0, Loss: 0.0005Mode train, Epoch [2/3], Step [500/570], Accuracy: 98.0, Loss: 0.0004**********Mode: [train], Loss: 0.0470, Acc: 0.9853********************Mode: [val], Loss: 0.0411, Acc: 0.9890**********Epoch [3/3]----------Mode train, Epoch [3/3], Step [100/570], Accuracy: 99.0, Loss: 0.0006Mode train, Epoch [3/3], Step [200/570], Accuracy: 99.0, Loss: 0.0009Mode train, Epoch [3/3], Step [300/570], Accuracy: 98.0, Loss: 0.0004Mode train, Epoch [3/3], Step [400/570], Accuracy: 99.0, Loss: 0.0003Mode train, Epoch [3/3], Step [500/570], Accuracy: 100.0, Loss: 0.0002**********Mode: [train], Loss: 0.0348, Acc: 0.9890********************Mode: [val], Loss: 0.0432, Acc: 0.9867********************Training complete in 0m 32sBest val Acc: 0.989000**********"""torch.save(model, 'CNN_MNIST.pkl')

训练完的 loss 和 acc 曲线

在这里插入图片描述

在这里插入图片描述

载入模型进行简单的测试,以下面这张 7 为例子
在这里插入图片描述

model = torch.load('CNN_MNIST.pkl')
# print(test_dataset.data[0].shape)  # torch.Size([28, 28])
# print(test_dataset.targets[0])  # tensor(7)
#
unload = transforms.ToPILImage()
img = unload(test_dataset.data[0])
img.save("test_data_0.jpg")# 带入模型进行预测
inputdata = test_dataset.data[0].view(1,1,28,28).float()/255
inputdata = inputdata.to(device)
outputs = model(inputdata)
print(outputs)
"""
tensor([[ -7.4075,  -3.4618,  -1.5322,   1.1591, -10.6026,  -5.5818, -17.4020,14.6429,  -4.5378,   1.0360]], device='cuda:0',grad_fn=<AddmmBackward0>)
"""
print(torch.max(outputs, 1))
"""
torch.return_types.max(
values=tensor([14.6429], device='cuda:0', grad_fn=<MaxBackward0>),
indices=tensor([7], device='cuda:0'))
"""

OK,预测结果正常,为 7

2 控制输出的概率, 看输入是什么

步骤

  • 初始随机一张图片
  • 我们希望让分类中某个数的概率最大
  • 最后看一下这个网络认为什么样的图像是这个数字
# hook类的写法
class SaveFeatures():"""注册hook和移除hook"""def __init__(self, module):self.hook = module.register_forward_hook(self.hook_fn)def hook_fn(self, module, input, output):# self.features = output.clone().detach().requires_grad_(True)self.features = output.clone()def close(self):self.hook.remove()

下面开始操作

# hook住模型
layer = 2
activations = SaveFeatures(list(model.children())[layer])# 超参数
lr = 0.005  # 学习率
opt_steps = 100  # 迭代次数
upscaling_factor = 10  # 放大的倍数(为了最后图像的保存)# 保存迭代后的数字
true_nums = []
random_init, num_init = 1, 0  # the type of initial# 带入网络进行迭代
for true_num in range(0, 10):# 初始化随机图片(数据定义和优化器一定要在一起)# 定义数据sz = 28if random_init:img = np.uint8(np.random.uniform(0, 255, (1,sz, sz))) / 255img = torch.from_numpy(img[None]).float().to(device)img_var = Variable(img, requires_grad=True)if num_init:# 将7变成0,1,2,3,4,5,6,7,8,9img = test_dataset.data[0].view(1, 1, 28, 28).float() / 255img = img.to(device)img_var = Variable(img, requires_grad=True)# 定义优化器optimizer = torch.optim.Adam([img_var], lr=lr, weight_decay=1e-6)for n in range(opt_steps):  # optimize pixel values for opt_steps timesoptimizer.zero_grad()model(img_var)  # 正向传播if random_init:loss = -activations.features[0, true_num] # 这里的loss确保某个值的输出大if num_init:loss = -activations.features[0, true_num] + F.mse_loss(img_var, img)  # 这里的loss确保某个值的输出大, 并且与原图不会相差很多loss.backward()optimizer.step()# 打印最后的img的样子print(activations.features[0, true_num])  # tensor(23.8736, device='cuda:0', grad_fn=<SelectBackward0>)print(activations.features[0])"""tensor([ 23.8736, -32.0724,  -5.7329, -18.6501, -16.1558, -18.9483,  -0.3033,-29.1561,  14.9260, -13.5412], device='cuda:0',grad_fn=<SelectBackward0>)"""print('========')img = img_var.cpu().clone()img = img.squeeze(0)# 图像的裁剪(确保像素值的范围)img[img > 1] = 1img[img < 0] = 0true_nums.append(img)unloader = transforms.ToPILImage()img = unloader(img)img = cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)sz = int(upscaling_factor * sz)  # calculate new image sizeimg = cv2.resize(img, (sz, sz), interpolation=cv2.INTER_CUBIC)  # scale image upif random_init:cv2.imwrite('random_regonize{}.jpg'.format(true_num), img)if num_init:cv2.imwrite('real7_regonize{}.jpg'.format(true_num), img)"""========tensor(22.3530, device='cuda:0', grad_fn=<SelectBackward0>)tensor([-22.4025,  22.3530,   6.0451,  -9.4460,  -1.0577, -17.7650, -11.3686,-11.8474,  -5.5310, -16.9936], device='cuda:0',grad_fn=<SelectBackward0>)========tensor(50.2202, device='cuda:0', grad_fn=<SelectBackward0>)tensor([-16.9364, -16.5120,  50.2202,  -9.5287, -25.2837, -32.3480, -22.8569,-20.1231,   1.1174, -31.7244], device='cuda:0',grad_fn=<SelectBackward0>)========tensor(48.8004, device='cuda:0', grad_fn=<SelectBackward0>)tensor([-33.3715, -30.5732,  -6.0252,  48.8004, -34.9467, -17.8136, -35.1371,-17.4484,   2.8954, -11.9694], device='cuda:0',grad_fn=<SelectBackward0>)========tensor(31.5068, device='cuda:0', grad_fn=<SelectBackward0>)tensor([-24.5204, -13.6857,  -5.1833, -22.7889,  31.5068, -20.2855, -16.7245,-19.1719,   2.4699, -16.2246], device='cuda:0',grad_fn=<SelectBackward0>)========tensor(37.4866, device='cuda:0', grad_fn=<SelectBackward0>)tensor([-20.2235, -26.1013, -25.9511,  -2.7806, -19.5546,  37.4866, -10.8689,-30.3888,   0.1591,  -8.5250], device='cuda:0',grad_fn=<SelectBackward0>)========tensor(35.9310, device='cuda:0', grad_fn=<SelectBackward0>)tensor([ -6.1996, -31.2246,  -8.3396, -21.6307, -16.9098,  -9.5194,  35.9310,-33.0918,  10.2462, -28.6393], device='cuda:0',grad_fn=<SelectBackward0>)========tensor(23.6772, device='cuda:0', grad_fn=<SelectBackward0>)tensor([-21.5441, -10.3366,  -4.9905,  -0.9289,  -6.9219, -23.5643, -23.9894,23.6772,  -0.7960, -16.9556], device='cuda:0',grad_fn=<SelectBackward0>)========tensor(57.8378, device='cuda:0', grad_fn=<SelectBackward0>)tensor([-13.5191, -53.9004,  -9.2996, -10.3597, -27.3806, -27.5858, -15.3235,-46.7014,  57.8378, -17.2299], device='cuda:0',grad_fn=<SelectBackward0>)========tensor(37.0334, device='cuda:0', grad_fn=<SelectBackward0>)tensor([-26.2983, -37.7131, -16.6210,  -1.8686, -11.5330, -11.7843, -25.7539,-27.0036,   6.3785,  37.0334], device='cuda:0',grad_fn=<SelectBackward0>)========"""
# 移除hook
activations.close()for i in range(0,10):_ , pre = torch.max(model(true_nums[i][None].to(device)),1)print("i:{},Pre:{}".format(i,pre))"""i:0,Pre:tensor([0], device='cuda:0')i:1,Pre:tensor([1], device='cuda:0')i:2,Pre:tensor([2], device='cuda:0')i:3,Pre:tensor([3], device='cuda:0')i:4,Pre:tensor([4], device='cuda:0')i:5,Pre:tensor([5], device='cuda:0')i:6,Pre:tensor([6], device='cuda:0')i:7,Pre:tensor([7], device='cuda:0')i:8,Pre:tensor([8], device='cuda:0')i:9,Pre:tensor([9], device='cuda:0')"""

在这里插入图片描述

可以看到相应最高的图片的样子,依稀可以看见 0,1,2,3,4,5,6,7,8,9 的轮廓

3 让正确的图片分类错误

步骤如下

  • 使用特定数字的图片,如数字7(初始化方式与前面的不一样,是特定而不是随机)
  • 使用上面训练好的网络,固定网络参数;
  • 最后一层因为是10个输出(相当于是概率), 我们 loss 设置为某个的负的概率值(利于梯度下降)
  • 梯度下降, 使负的概率下降,即相对应的概率值上升,我们最终修改的是初始的图片
  • 这样使得网络认为这张图片识别的数字的概率增加

简单描述,输入图片数字7,固定网络参数,让其他数字的概率不断变大,改变输入图片,最终达到迷惑网络的目的

只要将第二节中的代码 random_init, num_init = 1, 0 # the type of initial 改为 random_init, num_init = 0, 1 # the type of initial 即可

在这里插入图片描述
成功用 7 迷惑了所有类别

注意损失函数中还额外引入了 F.mse_loss(img_var, img) ,确保某个数字类别的概率输出增大, 并且与原图数字 7 像素上不会相差很多

http://www.ritt.cn/news/14346.html

相关文章:

  • 免费360地图手机版谷歌seo博客
  • 网站开发相关外文书籍武汉seo优化分析
  • ios应用程序开发seo外链怎么发
  • 网站的前端和后端湖南seo优化
  • 怎么塔建网站seo
  • 个人网站 名字国内销售平台有哪些
  • 备案时网站关闭seo培训优化
  • 大型网站开发用什么样式免费建站工具
  • 国际建设管理学会网站做一个企业网站需要多少钱
  • 网站衣服模特怎么做找培训机构的网站
  • asp政府网站源码嘉兴seo
  • 网站开发项目需求文档公司网站制作
  • 如何用ip做网站东莞关键词自动排名
  • 网站建设的简要任务执行书域名注册哪个平台比较好
  • 做电商怎么建网站自己的网站
  • 成都html5网站建设上海十大营销策划公司排名
  • 产品包装设计公司网站营销推广方案ppt案例
  • 武汉高端网站定制设计师做电商必备的几个软件
  • 自己怎么注册网站百度网盘登陆
  • 滨海专业做网站google关键词优化排名
  • 网站建设6000元淘宝一个关键词要刷多久
  • 做餐厅logo用什么软件网站免费网站建设模板
  • 购物网站 服务器 带宽 多大国家卫健委每日疫情报告
  • 6东莞做网站企业营销策划书
  • 女頻做的最好的网站营销图片素材
  • 自己做网站推广试玩哪家培训机构学校好
  • 免费空间访客领取网站在线crm网站
  • 哪个网站可以做旅行攻略关键词优化难度分析
  • 功能网站建设网站建设的系统流程图
  • 宿州做网站的公司自媒体营销