当前位置: 首页 > news >正文

wordpress未收到数据长沙网站托管seo优化公司

wordpress未收到数据,长沙网站托管seo优化公司,交友网站建设要多少钱,服务之家做网站简单吗往期精彩内容: 时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较 全是干货 | 数据集、学习资料、建模资源分享! EMD变体分解效果最好算法——CEEMDAN(五)-CSDN博客 拒绝信息泄露!VMD滚动分…

往期精彩内容:

时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较

全是干货 | 数据集、学习资料、建模资源分享!

EMD变体分解效果最好算法——CEEMDAN(五)-CSDN博客

拒绝信息泄露!VMD滚动分解 + Informer-BiLSTM并行预测模型-CSDN博客

风速预测(一)数据集介绍和预处理_风速数据在哪里下载-CSDN博客

风速预测(二)基于Pytorch的EMD-LSTM模型-CSDN博客

风速预测(三)EMD-LSTM-Attention模型-CSDN博客

风速预测(四)基于Pytorch的EMD-Transformer模型-CSDN博客

风速预测(五)基于Pytorch的EMD-CNN-LSTM模型-CSDN博客

风速预测(六)基于Pytorch的EMD-CNN-GRU并行模型-CSDN博客

单步预测-风速预测模型代码全家桶-CSDN博客

CEEMDAN +组合预测模型(BiLSTM-Attention + ARIMA)-CSDN博客

CEEMDAN +组合预测模型(Transformer - BiLSTM + ARIMA)-CSDN博客

CEEMDAN +组合预测模型(CNN-LSTM + ARIMA)-CSDN博客

CEEMDAN +组合预测模型(CNN-Transformer + ARIMA)-CSDN博客

多特征变量序列预测(一)——CNN-LSTM风速预测模型-CSDN博客

多特征变量序列预测(二)——CNN-LSTM-Attention风速预测模型-CSDN博客

多特征变量序列预测(三)——CNN-Transformer风速预测模型-CSDN博客

多特征变量序列预测(四) Transformer-BiLSTM风速预测模型-CSDN博客

多特征变量序列预测(五) CEEMDAN+CNN-LSTM风速预测模型-CSDN博客

多特征变量序列预测(六) CEEMDAN+CNN-Transformer风速预测模型-CSDN博客

基于麻雀优化算法SSA的CEEMDAN-BiLSTM-Attention的预测模型-CSDN博客

基于麻雀优化算法SSA的CEEMDAN-Transformer-BiGRU预测模型-CSDN博客

半天入门!锂电池剩余寿命预测(Python)-CSDN博客

超强预测模型:二次分解-组合预测-CSDN博客

多特征变量序列预测(七) CEEMDAN+Transformer-BiLSTM预测模型-CSDN博客

多特征变量序列预测(八)基于麻雀优化算法的CEEMDAN-SSA-BiLSTM预测模型-CSDN博客

VMD + CEEMDAN 二次分解,BiLSTM-Attention预测模型-CSDN博客

前言

本文基于前期介绍的风速数据(文末附数据集),介绍一种综合应用完备集合经验模态分解CEEMDAN与基于麻雀优化算法的SSA-Transformer-BiLSTM多特征变量序列预测模型,以提高时间序列数据的预测性能。

模型整体结构:数据集一共有天气、温度、湿度、气压、风速等九个变量,使用CEEMDAN算法对风速序列进行分解,然后合并所有的分量和原始数据集变量,形成一个加强的特征输入,通过滑动窗口制作数据集,利用多变量来预测风速。通过麻雀优化算法对SSA-Transformer-BiLSTM模型进行优化,提取加强后的特征,然后再送入全连接层,实现高精度的预测模型。

风速数据集的详细介绍可以参考下文:

风速预测(一)数据集介绍和预处理_垂直风速气象数据源-CSDN博客

 1 多特征变量数据集制作与预处理

1.1 导入数据

1.2 CEEMDAN分解

1.3 数据集制作与预处理

先合并原始数据变量和分解的分量,按照9:1划分训练集和测试集

制作数据集

2 麻雀优化算法

2.1 麻雀优化算法介绍

麻雀优化算法(Sparrow Optimization Algorithm,简称SOA)是一种基于自然界麻雀行为特点的优化算法,它模拟了麻雀在觅食、迁徙和社交等行为中的优化策略。该算法在解决多种优化问题方面展现出了良好的性能。

麻雀优化算法的基本思想是通过模拟麻雀的觅食行为,不断优化搜索空间中的解。算法的过程可以分为觅食行为、迁徙行为和社交行为三个阶段。

1. 觅食行为(Foraging Behavior):麻雀在觅食时会选择距离较近且具有较高适应度的食物源。在算法中,解空间中的每个个体被看作是一个食物源,具有适应度评价值。麻雀通过选择适应度较高的个体来寻找更优的解。

2. 迁徙行为(Migration Behavior):当麻雀在一个食物源周围搜索一段时间后,如果没有找到更优的解,它们会选择离开当前食物源,前往其他食物源继续寻找。在算法中,个体之间的位置信息会发生变化,以模拟麻雀的迁徙行为。

3. 社交行为(Social Behavior):麻雀在觅食时会通过与其他麻雀的交流来获取更多的信息,从而提高自己的觅食效率。在算法中,个体之间通过交换信息来改善自身的解,并且更新解空间中的最优解。

2.2 基于Python的麻雀优化算法实现

2.3 麻雀优化算法-超参数寻优过程

麻雀优化算法具有简单易实现、全局寻优能力和自适应性等特点,适用于解决组合优化问题。我们通过麻雀优化算法来进行SSA-Transformer-BiLSTM模型的超参数寻优。

通过设置合适的种群规模和优化迭代次数,我们在给定的超参数范围内,搜索出最优的参数。

3 基于Pytorch的CEEMDAN + SSA-Transformer-BiLSTM 预测模型

3.1  定义CEEMDAN + SSA-Transformer-BiLSTM预测模型

注意:输入风速数据形状为 [64, 24, 23], batch_size=64,24代表序列长度(滑动窗口取值),  维度23维代表挑选的8个变量和15个分量的维度。

在使用Transformer模型中的多头注意力时,输入维度必须能够被num_heads(注意力头的数量)整除。因为在多头注意力机制中,输入的嵌入向量会被分成多个头,每个头的维度是embed_dim / num_heads,因此embed_dim必须能够被num_heads整除,以确保能够均匀地分配给每个注意力头。

因为此时输入维度为23,本文采用对数据进行对半切分堆叠,使输入形状为[64, 12, 46]。

3.2 设置参数,训练模型

50个epoch,MSE 为0.005186,多变量特征CEEMDAN + SSA-Transformer-BiLSTM预测效果良好,加入CEEMDAN分解后,多变量预测效果提升明显,性能优越,适当调整模型参数,还可以进一步提高模型预测表现。

注意调整参数:

  • 可以修改麻雀优化算法的种群规模和优化迭代次数;

  • 调整Transformer编码器层数、多头注意力头数和BiLSTM层数维度数的参数搜索范围,增加更多的 epoch (注意防止过拟合)

  • 可以改变滑动窗口长度(设置合适的窗口长度)

4 模型评估与可视化

4.1 结果可视化

4.2 模型评估

5 代码、数据整理如下:

http://www.ritt.cn/news/1745.html

相关文章:

  • 昆山网站建设ikelv重庆seo代理计费
  • php外贸网站制作百度一下就会知道了
  • ftp服务器搭建设置网站信息2023年新闻小学生摘抄
  • 免费学做衣服的网站怎么推广自己的产品
  • 网站建设平台案例seo关键词推广怎么做
  • 做装修哪个网站推广好大数据营销系统多少钱
  • 广西建设教育协会网站培训心得体会范文大全1000
  • 大型o2o网站开发时间什么是seo和sem
  • 瑞安电影城网站建设深圳seo优化公司排名
  • 如何创办网站百度推广开户代理商
  • 大城b2c网站建设报价软文营销方案
  • 外贸做中英文网站seo课程培训入门
  • 石家庄网站建设石家庄百度导航最新版本免费下载
  • 网站开发如何做下载支付天津短视频seo
  • 虎鲸微信管理系统博客seo优化技术
  • 网站域名续费后SEO查询未更换卖友情链接的哪来那么多网站
  • 怎么做网址导航网站指数基金有哪些
  • 做网站买空间青岛官网优化
  • 著名的设计企业网站百度知道下载
  • 网站网站制作服务怎样建立网站平台
  • 论坛类的网站怎么做有哪些可以免费推广的平台
  • 设计网站faq需注意关键词搜索站长工具
  • 青海省建设厅报名网站阿里指数官网入口
  • 网站建设的基础常识在线教育
  • 国外网站推广短视频营销推广方案
  • 开发手机端网站冬镜seo
  • 南京做网站建设有哪些内容网站关键词排名怎么优化
  • 企业的网站维护网络优化需要哪些知识
  • 企业做网站营销的四大途径怎么搜索关键词
  • 免费网站建设 优帮云免费网站seo诊断