当前位置: 首页 > news >正文

网站建设单页面推广模板竞价推广返点开户

网站建设单页面推广模板,竞价推广返点开户,wordpress 设置备案号,wordpress页面添加新闻网络打车系统利用Hudi数据湖技术成功地解决了其大规模数据处理和分析的难题,提高了数据处理效率和准确性,为公司的业务发展提供了有力的支持。 Apache Hudi数据湖技术的一个典型应用案例是网络打车系统的数据处理场景,具体如下: 大…

网络打车系统利用Hudi数据湖技术成功地解决了其大规模数据处理和分析的难题,提高了数据处理效率和准确性,为公司的业务发展提供了有力的支持。
Apache Hudi数据湖技术的一个典型应用案例是网络打车系统的数据处理场景,具体如下:
大型网络打车公司每天需要处理的数据量达到数千亿条,数据规模达到数百PB级别。网络打车系统使用Hudi数据湖技术来跟踪记录每一次打车过程的所有事件,包括打开打车应用、发起打车、上车、到达目的地下车以及对司机的评价打分等。
在这个场景中,网络打车系统选择使用Hudi的写时复制表(COW)来存储应用程序中用户交互的历史记录数据。这些数据一旦产生并不会发生追溯修改,因此适合使用COW表来存储。使用Hudi后,网络打车系统的写入效率相比之前的Spark作业提高了100多倍,同时满足了数据查询的性能和低延迟要求。
此外,网络打车系统还利用Hudi提供的多种视图能力来优化数据查询。例如,使用快照查询来获取某个时间点的数据快照,使用增量查询来只查询自上次查询以来的新数据。这些视图能力使得网络打车系统能够更加高效地处理和分析数据,进而优化其业务决策和运营效率。

根据网络打车系统的Hudi应用场景,以下是详细的架构设计与实现方案:

一、硬件配置方案

  1. 存储层:
  • 分布式存储:10,000节点HDFS集群(或S3兼容对象存储)
  • 存储类型:NVMe SSD(热数据)+ HDD(冷数据)
  • 总容量:1.5EB(支持3副本)
  • 网络:100Gbps RDMA网络
  1. 计算层:
  • Spark/Flink集群:5000节点
  • 配置:256核/节点,2TB内存/节点
  • 本地SSD缓存:10TB/节点
  1. 网络架构:
  • 东西向流量:Clos网络架构
  • 延迟要求:计算节点间<1ms
  • 带宽:数据节点间40Gbps专线

二、系统架构设计

批量处理
流处理
元数据
存储
数据源
Kafka集群
处理层
Spark
Flink
Hudi数据湖
Hive Metastore
HDFS/S3
查询引擎
Presto/Trino
Hive
Spark SQL
BI工具

三、软件技术栈

  1. 核心组件:
  • 存储引擎:Apache Hudi 0.12.0
  • 计算引擎:Spark 3.3 + Flink 1.16
  • 资源调度:YARN 3.3 + Kubernetes 1.26
  • 数据格式:Parquet + Avro
  • 元数据管理:Hive Metastore 3.1.2
  1. 辅助组件:
  • 数据采集:Flume 1.10 + Kafka 3.3
  • 查询引擎:Trino 412
  • 监控体系:Prometheus 2.43 + Grafana 9.4

四、具体实现流程

  1. 数据写入流程:
# 示例Spark写入代码(Scala)
val hudiOptions = Map[String,String]("hoodie.table.name" -> "ride_events","hoodie.datasource.write.recordkey.field" -> "event_id","hoodie.datasource.write.partitionpath.field" -> "event_date,event_type","hoodie.datasource.write.precombine.field" -> "event_ts","hoodie.upsert.shuffle.parallelism" -> "5000","hoodie.insert.shuffle.parallelism" -> "5000","hoodie.bulkinsert.shuffle.parallelism" -> "5000"
)val eventDF = spark.read.format("kafka").option("kafka.bootstrap.servers", "kafka-cluster:9092").option("subscribe", "ride-events").load().select(from_json(col("value"), schema).as("data")).select("data.*")eventDF.write.format("org.apache.hudi").options(hudiOptions).option("hoodie.datasource.write.operation", "upsert").mode("append").save("s3://data-lake/ride_events")
  1. 查询优化配置:
-- 创建Hudi表外部关联
CREATE EXTERNAL TABLE ride_events
USING hudi
LOCATION 's3://data-lake/ride_events';-- 快照查询(最新数据)
SELECT * FROM ride_events 
WHERE event_date = '2023-08-01' AND event_type = 'payment';-- 增量查询(Java示例)
HoodieIncQueryParam incParam = HoodieIncQueryParam.newBuilder().withStartInstantTime("20230801120000").build();SparkSession.read().format("org.apache.hudi").option(HoodieReadConfig.QUERY_TYPE, HoodieReadConfig.QUERY_TYPE_INCREMENTAL_OPT_VAL).option(HoodieReadConfig.BEGIN_INSTANTTIME, "20230801120000").load("s3://data-lake/ride_events").createOrReplaceTempView("incremental_data");

五、关键优化技术

  1. 存储优化:
// Hudi表配置(Java)
HoodieWriteConfig config = HoodieWriteConfig.newBuilder().withPath("s3://data-lake/ride_events").withSchema(schema.toString()).withParallelism(5000, 5000).withCompactionConfig(HoodieCompactionConfig.newBuilder().withInlineCompaction(true).withMaxNumDeltaCommitsBeforeCompaction(5).build()).withStorageConfig(HoodieStorageConfig.newBuilder().parquetMaxFileSize(2 * 1024 * 1024 * 1024L)  // 2GB.build()).build();
  1. 索引优化:
# hudi.properties
hoodie.index.type=BLOOM
hoodie.bloom.index.bucketized.checking=true
hoodie.bloom.index.keys.per.bucket=100000
hoodie.bloom.index.filter.type=DYNAMIC_V0

六、运维监控体系

  1. 关键监控指标:
# Prometheus监控指标示例
hudi_commit_duration_seconds_bucket{action="commit",le="10"} 23567
hudi_compaction_duration_minutes 8.3
hudi_clean_operations_total 1428
hudi_bytes_written_total{type="parquet"} 1.2e+18

七、性能调优参数

  1. Spark调优参数:
spark.conf.set("spark.sql.shuffle.partitions", "10000")
spark.conf.set("spark.executor.memoryOverhead", "4g")
spark.conf.set("spark.hadoop.parquet.block.size", 268435456)  # 256MB

该架构设计可实现以下性能指标:

  • 写入吞吐:>500万条/秒
  • 查询延迟:点查<1s,全表扫描<5min/PB
  • 数据新鲜度:端到端延迟<5分钟
  • 存储效率:压缩比8:1(原始JSON vs Parquet)

实际部署时需要根据数据特征动态调整以下参数:

  1. 文件大小(hoodie.parquet.max.file.size)
  2. 压缩策略(hoodie.compact.inline.trigger.strategy)
  3. Z-Order索引字段选择
  4. 增量查询时间窗口策略
http://www.ritt.cn/news/23213.html

相关文章:

  • 北京建设部网站 信息中心公司网站如何制作设计
  • 山东省交通运输厅网站开发单位在线网页制作系统搭建
  • 网站官网怎么做怎么样建一个网站
  • wordpress评论机器人seo从入门到精通
  • 自己做网站开发网站搜索排名优化价格
  • 一起买买买网站建设微商怎样让客源主动加你
  • 装饰网站建设价格网站主页
  • 如何做幸运28网站代理宁波营销型网站建设优化建站
  • 我想克隆个网站 怎么做比百度强大的搜索引擎
  • wordpress文章站网站seo入门基础教程
  • 上海公司注册网站三只松鼠搜索引擎营销案例
  • 做网站的缺点百度网络营销app
  • 做婚庆网站有哪些seoul是什么意思中文
  • 什么网站做外贸最多的排名第一的助勃药
  • 石碣做网站国际机票搜索量大涨
  • 如何做局域网网站新手如何找cps推广渠道
  • 北京网页设计公司哪儿济南兴田德润简介佛山seo技术
  • 做网站布为网seo关键词大搜
  • 新手用jsp做网站自己做一个网站要多少钱
  • 住房和城乡建设部贰级建造师网站网站指数查询
  • 网站如何推广方案策划软件外包公司有前途吗
  • 漯河做网站优化西安关键词优化排名
  • 做外贸公司网站重不重要软件开发平台
  • 网站建设是属于b2百度指数入口
  • 蝌蚪窝一个释放做网站seo实战培训
  • 大山子网站建设百度极速版免费下载安装
  • 遵化手机网站设计网络营销推广的特点
  • 商城网站建设公司排行百度指数网站
  • 网站怎么制作做在线分析网站
  • 眼镜企业网站建设方案2023年适合小学生的新闻有哪些