当前位置: 首页 > news >正文

英文定机票网站建设广告外链购买平台

英文定机票网站建设,广告外链购买平台,网站建设大赛,网站交互效果1.分区规则 1.分区规则 shuffle 1.打乱顺序 2.重新组合 1.分区的规则 默认与MapReduce的规则一致,都是按照哈希值取余进行分配. 一个分区可以多个组,一个组的数据必须一个分区 2. 分组的分区导致数据倾斜怎么解决? 扩容 让分区变多修改分区规则 3.HashMap扩容为什么必须…

1.分区规则

1.分区规则

shuffle
1.打乱顺序
2.重新组合

1.分区的规则

默认与MapReduce的规则一致,都是按照哈希值取余进行分配.
一个分区可以多个组,一个组的数据必须一个分区

2. 分组的分区导致数据倾斜怎么解决?

  • 扩容 让分区变多
  • 修改分区规则

3.HashMap扩容为什么必须是2的倍数?

当不是2的倍数时, 好多的位置取不到
比如 为5 01234 123都取不到
必须保证,相关的位数全是1,所以必定2的倍数 2的n次方
所以位运算不是什么时候都能用的
在这里插入图片描述

2.转换算子

1.单值转换算子

1.filter过滤器

1.注意

过滤只是将数据进行校验,而不是修改数据. 结果为true就保留,false就丢弃
在这里插入图片描述

2.代码

JavaSparkContext sc = new JavaSparkContext("local[*]","filter");List<String> dataList = Arrays.asList("giao","giao2","zhangsan","lisi");
JavaRDD<String> rdd1 = sc.parallelize(dataList);
//JavaRDD<String> rddFilter1 = rdd1.filter(null);
JavaRDD<String>  rddFilter2= rdd1.filter(s->s.substring(0,1).toLowerCase().equals("g"));
//rddFilter1.collect().forEach(System.out::println);
System.out.println("----------------------------");
rddFilter2.collect().forEach(System.out::println);

在这里插入图片描述

2.dinstinct

1.原理

分组
通过使用分组取重,相同的话,都是一个组了,所以Key唯一
应该是先分组,然后吧K提出来就好了

2.代码

JavaSparkContext sc = new JavaSparkContext("local[*]","Distinct");List<String> dataList = Arrays.asList("giao1","gg1","gg1","gg2","gg2","gg1","gg3","gg1","gg5","gg3");
JavaRDD<String> rdd1 = sc.parallelize(dataList);
JavaRDD<String> rddDistinct = rdd1.distinct();
rddDistinct.collect().forEach(System.out::println);

在这里插入图片描述

3.排序

1.介绍

sortby方法需要传3个参数
参数1 排序规则
参数2 升序还是降序(false) 默认升序(true)
参数3 排序的分区数量(说明方法底层是靠shuffle实现,所以才有改变分区的能力)

2.排序规则

排序规则,是按照结果去排序
其实是用结果生成一个K值,通过K值进行排序,然后展示 V值
或者说权值, 按照权值排序
将Value变成K V

3.代码

 public static void main(String[] args) {JavaSparkContext sc = new JavaSparkContext("local[*]","SparkSort");List<String> dataList = Arrays.asList("kunkun","giaogiao","GSD","JJ","chenzhen","Lixiaolong");JavaRDD<String> rdd1 = sc.parallelize(dataList);JavaRDD<String> rddSort = rdd1.sortBy(s -> {switch (s.substring(0, 1).toLowerCase()) {case "k":return 5;case "g":return 3;case "j":return 1;case "c":return 2;case "l":return 4;}return null;}, false, 3);rddSort.collect().forEach(System.out::println);}

2.键值对转换算子

1.介绍

1.什么是键值对转换算子

如何区分是键值对方法还是单值方法呢?
通过参数来判断, 如果参数是一个值,就是单值,如果是2个,就是键值对

2.元组是不是键值对?

public static void main(String[] args) {JavaSparkContext sc = new JavaSparkContext("local[*]","KVRDD");List<Integer> dataList = Arrays.asList(1, 2, 3, 4, 5);JavaRDD<Integer> rdd1 = sc.parallelize(dataList);JavaRDD<Tuple2> rddmap = rdd1.map(num -> new Tuple2(num, num));rddmap.collect().forEach(System.out::println);
}

在这里插入图片描述
答案是,不是,因为这个的返回值,是一个元组,而元组整体,是一个单值,所以,是单值
只有返回值 是RDD<K1,V1 >的时候,才是键值对类型算子

3. 使用Pair转换键值对算子

public static void main(String[] args) {JavaSparkContext sc  = new JavaSparkContext("local[*]","RddPair");List<Integer> dataList = Arrays.asList(1, 2, 3, 4, 5);JavaRDD<Integer> rdd = sc.parallelize(dataList);JavaPairRDD<Integer, Integer> rddPair = rdd.mapToPair(num -> new Tuple2<>(num, num));rddPair.collect().forEach(System.out::println);}

在这里插入图片描述

4.直接在获取时转换键值对

这里使用的是parallelizePairs方法 获取的是JavaPairRDD

public static void main(String[] args) {JavaSparkContext sc = new JavaSparkContext("local[*]","KVRDD");JavaPairRDD<String, Integer> rddPair = sc.parallelizePairs(Arrays.asList(new Tuple2<>("a", 1),new Tuple2<>("a", 2),new Tuple2<>("b", 1),new Tuple2<>("b", 1),new Tuple2<>("c", 2),new Tuple2<>("c", 1)));rddPair.collect().forEach(System.out::println);}

在这里插入图片描述

5.分组来获取键值对


```java
public static void main(String[] args) {JavaSparkContext sc  = new JavaSparkContext("local[*]","RddPair");List<String> dataList = Arrays.asList("aa","bb","aa","bb","cc");JavaRDD<String> rdd = sc.parallelize(dataList);JavaPairRDD<Object, Iterable<String>> rddGroup = rdd.groupBy(s->s);rddGroup.collect().forEach(System.out::println);
}

在这里插入图片描述

2.mapValue方法

1.介绍

直接对value进行操作,不需要管K
当然,也有mapKey方法可以无视Value操作Key

2.代码演示

  public static void main(String[] args) {JavaSparkContext sc = new JavaSparkContext("local[*]","KVRDD");JavaPairRDD<String, Integer> rddPair = sc.parallelizePairs(Arrays.asList(new Tuple2<>("a", 1),new Tuple2<>("a", 2),new Tuple2<>("b", 1),new Tuple2<>("b", 1),new Tuple2<>("c", 2),new Tuple2<>("c", 1)));JavaPairRDD<String, Integer> mapV = rddPair.mapValues(num -> num * 2);mapV.collect().forEach(System.out::println);}

在这里插入图片描述

3.WordCount实现

iter.spliterator().estimateSize());
spliterator
Spliterator(Split Iterator)是Java 8引入的一个新接口,用于支持并行遍历和操作数据。它是Iterator的扩展,可以用于在并行流(Parallel Stream)中对数据进行划分和遍历,从而实现更高效的并行处理
spliterator()方法是在Iterable接口中定义的一个默认方法,用于生成一个Spliterator对象,以支持数据的并行遍历。它的具体作用是将Iterable中的数据转换为一个可以在并行流中使用的Spliterator对象。

estimateSize

estimateSize()方法是Java中Spliterator接口的一个方法,用于估算Spliterator所包含的元素数量的大小。Spliterator是用于支持并行遍历和操作数据的接口,而estimateSize()方法提供了一个估计值,用于在处理数据时预测Spliterator包含的元素数量。

public static void main(String[] args) {JavaSparkContext sc  = new JavaSparkContext("local[*]","RddPair");List<String> dataList = Arrays.asList("aa","bb","aa","bb","cc");JavaRDD<String> rdd = sc.parallelize(dataList);JavaPairRDD<Object, Iterable<String>> rddGroup = rdd.groupBy(s->s);JavaPairRDD<Object, Long> wordCount = rddGroup.mapValues(iter -> iter.spliterator().estimateSize());wordCount.collect().forEach(System.out::println);
}

在这里插入图片描述

3.groupby 与groupByKey

1 .代码

public static void main(String[] args) {JavaSparkContext sc = new JavaSparkContext("local[*]","G1");JavaPairRDD<String, Integer> rddPair;rddPair = sc.parallelizePairs(Arrays.asList(new Tuple2<>("a", 1),new Tuple2<>("a", 2),new Tuple2<>("b", 1),new Tuple2<>("b", 1),new Tuple2<>("c", 2),new Tuple2<>("c", 1)));JavaPairRDD<String, Iterable<Integer>> rddGroupByKey = rddPair.groupByKey();JavaPairRDD<String, Iterable<Tuple2<String, Integer>>> rddGroupBy = rddPair.groupBy(t -> t._1);rddGroupByKey.collect().forEach(System.out::println);}

在这里插入图片描述

2.分析区别

  • 1.参数
    GroupBy是自选规则 而GroupByKey是将PairRDD的Key当做分组规则
  • 2.结果
    GroupBy是将作为单值去分组,即使RDD是Pair, 而GroupByKey 则是将K V分开 ,将V作为组成员

3.注意

GroupByKey是不能进行随意使用的,底层用的含有shuffle,如果计算平均值,就不能通过GroupByKey直接进行计算.

4.reduce与reduceByKey

1.介绍

多个变量进行同样的运算规则
Stream是1.8新特性,
计算的本质 两两结合
在这里插入图片描述
reduce

2. 代码

  public static void main(String[] args) {JavaSparkContext sc = new JavaSparkContext("local[*]","Reduce");JavaPairRDD<String, Integer> rddPair;rddPair = sc.parallelizePairs(Arrays.asList(new Tuple2<>("a", 1),new Tuple2<>("a", 2),new Tuple2<>("b", 1),new Tuple2<>("b", 1),new Tuple2<>("c", 2),new Tuple2<>("c", 1)));rddPair.reduceByKey(Integer::sum).collect().forEach(System.out::println);}

在这里插入图片描述

3.理解

相同Key值的V进行运算,所以底层是有分组的,所以底层是一定有Shuffle,一定有改变分区的能力,改变分区数量和分区规则.

4.与groupByKey区别

reduceByKey
将相同key的数量中1的V进行两两聚合
在这里插入图片描述
reduceByKey 相同的key两两聚合,在shuffle落盘之前对分区内数据进行聚合,这样会减少落盘数据量,并不会影响最终结果(预聚合) 这就是combine
在这里插入图片描述

有钱先整IBM小型机

Shuffle优化
1.花钱
2.调大缓冲区(溢出次数减少)
3.

sortByKey
想比较必须实现可比较的接口
默认排序规则为升序,
通过K对键值对进行排序

行动算子
通过调用RDD方法让Spark的功能行动起来
在这里插入图片描述
map 是在new
在这里插入图片描述

转换算子 得到的是RDD
注意 转换跑不起来 行动能跑起来 这句话是错误的

当使用sort时,也是能跑起来的,但是还是转换算子
在这里插入图片描述
第一行运行占用内存,第一个for 运算需要内存,但是第一行占用了大量内存,所以第一行浪费了,这就需要懒加载,所以第一行的执行时机是在第二个for运行前使用的.

注意map collect 不是懒加载,只是没人调用他的job(RDD算子内部的代码)
RDD算子外部的代码都是在Driver端

http://www.ritt.cn/news/6993.html

相关文章:

  • 重庆网站推广外包企业企业策划
  • 陕西省西咸新区开发建设管理委员会官方网站软件开发外包公司
  • 自己做投票网站怎么弄网络营销做的好的企业
  • 社交网站用户体验西地那非片说明书
  • 做一个网站大概多少钱seo怎么优化关键词排名培训
  • 青岛企业建设网站企业百度信息流广告怎么投放
  • 科技公司名字大全seo推广公司排名
  • 网站提示域名重定向怎么做什么叫软文推广
  • 佛山制作网站公司哪家好百度流量推广项目
  • 宜春网站制作公司武汉百度推广seo
  • 天津自制网站建设产业网络营销的模式有哪些
  • 网站top排行榜佛山本地网站建设
  • 乐清做网站的宁波seo关键词优化教程
  • 设计公司网站推蛙网络
  • 帮忙做简历的网站什么软件可以免费发广告
  • 甘肃庆阳正宁疫情最新消息班级优化大师官网
  • 专业微信网站建设公司首选公司哪家好游戏代理怎么找渠道
  • 外贸网站模板外贸网站建设如何制作简单的网页链接
  • 重庆建网站优化关键词优化推广公司排名
  • 教学网站制作如何创建个人网站免费
  • 国外的电商网站北京百度关键词优化
  • 做网站1000以下哪家好关键词有几种类型
  • 网站后台管理系统毕业论文福州短视频seo网站
  • 闽侯网站建设旅游景点推广软文
  • 辽宁做网站和优化哪家好设计网络营销方案
  • 站酷网官网下载东莞建设企业网站
  • 上传文件到网站百度首页纯净版怎么设置
  • 上海网站建设公司推荐排名成都网络优化公司有哪些
  • 资源下载网站建设seo关键词排名优化的方法
  • 新手淘宝客在百度推广网站么做nba交易最新消息汇总