当前位置: 首页 > news >正文

如何做原创小说网站网站关键词有哪些

如何做原创小说网站,网站关键词有哪些,做网站的时候遇到的问题,h5网站怎么做一、如何使用列表创建⼀个DataFrame # 导入pandas库 import pandas as pd# 创建一个列表,其中包含数据 data [[A, 1], [B, 2], [C, 3]]# 使用pandas的DataFrame()函数将列表转换为DataFrame df pd.DataFrame(data, columns[Letter, Number]) # 列名# 显示创建的…

一、如何使用列表创建⼀个DataFrame

# 导入pandas库
import pandas as pd# 创建一个列表,其中包含数据
data = [['A', 1], ['B', 2], ['C', 3]]# 使用pandas的DataFrame()函数将列表转换为DataFrame
df = pd.DataFrame(data, columns=['Letter', 'Number'])  # 列名# 显示创建的DataFrame
print(df)Letter  Number
0      A       1
1      B       2
2      C       3

二、如何使用Series 字典对象生成 DataFrame

# 导入pandas库
import pandas as pd# 创建一个字典对象
data = {'Name': ['Tom', 'Nick', 'John'], 'Age': [20, 21, 19]}# 使用pandas的DataFrame()函数将字典转换为DataFrame
df = pd.DataFrame(data)# 显示创建的DataFrame
print(df)Name  Age
0   Tom   20
1  Nick   21
2  John   19

三、如何查看头部数据和尾部数据

分别是df.head()df.tail()  →默认返回前(后)5条数据。

四、如何快速查看数据的统计摘要

区别df.describe()df.info()

  • df.describe():默认情况下,它会为数值型列提供中心趋势、离散度和形状的统计描述,包括计数、均值、标准差、最小值、下四分位数(25%)、中位数(50%)、上四分位数(75%)以及最大值。此外,你可以通过传递参数来调整df.describe()的行为,例如include参数可以设置为'all'来包含所有列的统计信息,或者设置为'O'来仅包含对象列的统计信息。
  • df.info():主要用于提供关于DataFrame的一般信息,如列索引、数据类型、非空值数量以及内存使用情况。它不会提供数值型数据的统计摘要,而是更多地关注于数据集的整体结构和数据类型。

五、pandas中的索引操作

pandas⽀持四种类型的多轴索引,它们是:
Dataframe.[ ] 此函数称为索引运算符
Dataframe.loc[ ] : 此函数⽤于标签
Dataframe.iloc[ ] : 此函数⽤于基于位置或整数的
Dataframe.ix[] : 此函数⽤于基于标签和整数的

panda set_index()是⼀种将列表、序列或dataframe设置为dataframe索引的⽅法。语法:
DataFrame.set_index(keys, inplace=False)

  • keys:列标签或列标签/数组列表,需要设置为索引的列
  • inplace:默认为False,适当修改DataFrame(不要创建新对象)

如何重置索引 ?

Pandas Series.reset_index()函数的作⽤是:⽣成⼀个新的DataFrame或带有重置索引的Series。

六、pandas的运算操作 

如何得到⼀个数列的最⼩值、第25百分位、中值、第75位和最⼤值?

import pandas as pd
import numpy as np
from numpy import percentile
p = pd.Series(np.random.normal(14, 6, 22))
state = np.random.RandomState(120)
p = pd.Series(state.normal(14, 6, 22))
print(percentile(p, q=[0, 25, 50, 75, 100]))
  • Pandas支持加(+)、减(-)、乘(*)、除(/)、取余(%)等基本算术运算符,可以用于DataFrame和Series之间的元素级运算,以及与标量的运算。
  • Pandas提供了一系列内置函数,如sum()mean()max()min()等,用于对数据进行聚合计算。此外,还可以使用apply()方法将自定义函数应用于DataFrame或Series。
  • 可以使用sort_values()方法对DataFrame或Series进行排序,根据指定的列或行进行升序或降序排列。

七、apply() 函数使用方法

如果需要将函数应⽤到DataFrame中的每个数据元素,可以使⽤ apply() 函数以便将函数应⽤于给定dataframe中的每⼀⾏。

import pandas as pd
def add(a, b, c):return a + b + c
def main():data = {'A':[1, 2, 3],'B':[4, 5, 6],'C':[7, 8, 9] }
df = pd.DataFrame(data)
print("Original DataFrame:\n", df)
df['add'] = df.apply(lambda row : add(row['A'],
row['B'], row['C']), axis = 1)Original DataFrame:A  B  C
0  1  4  7
1  2  5  8
2  3  6  9A  B  C  add
0  1  4  7   12
1  2  5  8   15
2  3  6  9   18

八、pandas的合并操作

如何将新⾏追加到pandas DataFrame?
Pandas dataframe.append()函数的作⽤是:将其他dataframe的⾏追加到给定的dataframe的末尾,返回⼀个新的dataframe对象。

语法:DataFrame.append( ignore_index=False,)
参数:

  • ignore_index : 如果为真,就不要使⽤索引标签 
import pandas as pd
# 使⽤dictionary创建第⼀个Dataframe
df1 =df =pd.DataFrame({"a":[1, 2, 3, 4],"b":[5, 6, 7, 8]})
# 使⽤dictionary创建第⼆个Dataframe
df2 =pd.DataFrame({"a":[1, 2, 3],"b":[5, 6, 7]})
# 现在将df2附加到df1的末尾
df1.append(df2)

第⼆个DataFrame的索引值保留在附加的DataFrame中,设置ignore_index = True可以避免这种情况。

九、分组(Grouping)聚合

“group by” 指的是涵盖下列⼀项或多项步骤的处理流程:

  • 分割:按条件把数据分割成多组;
  • 应⽤:为每组单独应⽤函数;
  • 组合:将处理结果组合成⼀个数据结构。
  1. 先分组,再⽤ sum()函数计算每组的汇总数据 
  2. 多列分组后,⽣成多层索引,也可以应⽤ sum 函数
  3. 分组后可以使用如sum()mean()min()max()等聚合函数来计算每个组的统计值。如果想要对每个分组应用多个函数,可以使用agg()方法,并传入一个包含多个函数名的列表,例如group_1.agg(['sum', 'mean'])

十、数据透视表应用

透视表是⼀种可以对数据动态排布并且分类汇总的表格格式,在pandas中它被称作pivot_table。

透视表是一种强大的数据分析工具,它可以快速地对大量数据进行汇总、分析和呈现。 

pivot_table(data, values=None, index=None, columns=None)

  • Index: 就是层次字段,要通过透视表获取什么信息就按照相应的顺序设置字段
  • Values: 可以对需要的计算数据进⾏筛选
  • Columns: 类似Index可以设置列层次字段,它不是⼀个必要参数,作为⼀种分割数据的可选⽅式。
import pandas as pd# 创建示例数据
data = {'日期': ['2022-01-01', '2022-01-01', '2022-01-02', '2022-01-02'],'产品': ['A', 'B', 'A', 'B'],'地区': ['北京', '上海', '北京', '上海'],'销售额': [100, 200, 150, 250]}
df = pd.DataFrame(data)# 使用pivot_table方法创建数据透视表
pivot_table = df.pivot_table(values='销售额', index='产品', columns='地区', aggfunc='sum')print(pivot_table)# 结果
地区    北京   上海
产品          
A      100   150
B      200   250

http://www.ritt.cn/news/15194.html

相关文章:

  • 贵阳网站建设企业网站seo运营
  • 如何给网站流量来源做标记通过在网址后边加问号?全国疫情最新名单
  • 网站怎么优化推广重庆自动seo
  • 艺术学院网站模板网络营销常用的方法有哪些
  • 新乡做网站哪家好店铺推广怎么做
  • 做爰全的网站网络营销培训机构
  • 用dw做的网站容易变形百度企业官网认证
  • 中国住房和建设委员会网站针对大学生推广引流
  • 做网站需要套模板免费的外贸b2b网站
  • 做教育网站有什么好处html网页制作案例
  • 的动态网站开发百度搜索指数在线查询
  • 做网站用jsp还是html我要发布信息
  • 免费做网站哪家好常州百度推广代理
  • 彩票网站什么做5188关键词挖掘工具
  • 滕州哪里有做网站的成品网站1688入口网页版怎样
  • 潍坊网站建设官网如何做网络推广
  • 哪里的郑州网站建设互联网营销师培训教材
  • 网站权重优化方式建站平台
  • 个人网页制作教程与步骤seo云优化
  • 房地产开发商是干什么的宁波抖音seo搜索优化软件
  • 集团官方网站建设西安 做网站
  • 做好网站建设对企业有什么作用中国体育新闻
  • 中国人做跨电商有什么网站服装店营销策划方案
  • 苹果软件 做ppt模板下载网站有哪些内容挖掘关键词工具
  • 有没有学做ppt发网站或论坛福建企业seo推广
  • 北京海淀建筑行业培训中心大连百度网站排名优化
  • C 做的窗体怎么变成网站什么平台发广告最有效
  • 单页网站制作 在线 支付旅游app推广营销策略
  • 网站建设 微信微博外包怎么推广公司网站
  • 做网站页面遇到的问题黑帽seo技术有哪些