当前位置: 首页 > news >正文

海南住房建设厅定额网站百度浏览器

海南住房建设厅定额网站,百度浏览器,wordpress 仿站 主题,现在怎么做动态网站经典的全连接神经网络 经典的全连接神经网络来包含四层网络:输入层、两个隐含层和输出层,将手写数字识别任务通过全连接神经网络表示,如 图3 所示。 图3:手写数字识别任务的全连接神经网络结构输入层:将数据输入给神经…

经典的全连接神经网络

经典的全连接神经网络来包含四层网络:输入层、两个隐含层和输出层,将手写数字识别任务通过全连接神经网络表示,如 图3 所示。


图3:手写数字识别任务的全连接神经网络结构

  • 输入层:将数据输入给神经网络。在该任务中,输入层的尺度为28×28的像素值。
  • 隐含层:增加网络深度和复杂度,隐含层的节点数是可以调整的,节点数越多,神经网络表示能力越强,参数量也会增加。在该任务中,中间的两个隐含层为10×10的结构,通常隐含层会比输入层的尺寸小,以便对关键信息做抽象,激活函数使用常见的Sigmoid函数。
  • 输出层:输出网络计算结果,输出层的节点数是固定的。如果是回归问题,节点数量为需要回归的数字数量。如果是分类问题,则是分类标签的数量。在该任务中,模型的输出是回归一个数字,输出层的尺寸为1。

说明:

隐含层引入非线性激活函数Sigmoid是为了增加神经网络的非线性能力。

举例来说,如果一个神经网络采用线性变换,有四个输入x1x_1x1~x4x_4x4,一个输出yyy。假设第一层的变换是z1=x1−x2z_1=x_1-x_2z1=x1x2z2=x3+x4z_2=x_3+x_4z2=x3+x4,第二层的变换是y=z1+z2y=z_1+z_2y=z1+z2,则将两层的变换展开后得到y=x1−x2+x3+x4y=x_1-x_2+x_3+x_4y=x1x2+x3+x4。也就是说,无论中间累积了多少层线性变换,原始输入和最终输出之间依然是线性关系。


Sigmoid是早期神经网络模型中常见的非线性变换函数,绘制出Sigmoid的函数曲线。
在这里插入图片描述

卷积神经网络

虽然使用经典的全连接神经网络可以提升一定的准确率,但其输入数据的形式导致丢失了图像像素间的空间信息,这影响了网络对图像内容的理解。对于计算机视觉问题,效果最好的模型仍然是卷积神经网络。卷积神经网络针对视觉问题的特点进行了网络结构优化,可以直接处理原始形式的图像数据,保留像素间的空间信息,因此更适合处理视觉问题。

卷积神经网络由多个卷积层和池化层组成,如 图4 所示。卷积层负责对输入进行扫描以生成更抽象的特征表示,池化层对这些特征表示进行过滤,保留最关键的特征信息。


图4:在处理计算机视觉任务中大放异彩的卷积神经网络


说明:

本节只简单介绍用卷积神经网络实现手写数字识别任务,以及它带来的效果提升。读者可以将卷积神经网络先简单的理解成是一种比经典的全连接神经网络更强大的模型即可,更详细的原理和实现在接下来的《计算机视觉-卷积神经网络基础》中讲述。


两层卷积和池化的神经网络实现如下所示。

# 定义 SimpleNet 网络结构
import paddle
from paddle.nn import Conv2D, MaxPool2D, Linear
import paddle.nn.functional as F
# 多层卷积神经网络实现
class MNIST(paddle.nn.Layer):def __init__(self):super(MNIST, self).__init__()# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2self.conv1 = Conv2D(in_channels=1, out_channels=20, kernel_size=5, stride=1, padding=2)# 定义池化层,池化核的大小kernel_size为2,池化步长为2self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2self.conv2 = Conv2D(in_channels=20, out_channels=20, kernel_size=5, stride=1, padding=2)# 定义池化层,池化核的大小kernel_size为2,池化步长为2self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)# 定义一层全连接层,输出维度是1self.fc = Linear(in_features=980, out_features=1)# 定义网络前向计算过程,卷积后紧接着使用池化层,最后使用全连接层计算最终输出# 卷积层激活函数使用Relu,全连接层不使用激活函数def forward(self, inputs):x = self.conv1(inputs)x = F.relu(x)x = self.max_pool1(x)x = self.conv2(x)x = F.relu(x)x = self.max_pool2(x)x = paddle.reshape(x, [x.shape[0], -1])x = self.fc(x)return x

使用MNIST数据集训练定义好的卷积神经网络,如下所示。


说明:
以上数据加载函数load_data返回一个数据迭代器train_loader,该train_loader在每次迭代时的数据shape为[batch_size, 784],因此需要将该数据形式reshape为图像数据形式[batch_size, 1, 28, 28],其中第二维代表图像的通道数(在MNIST数据集中每张图片的通道数为1,传统RGB图片通道数为3)。

#网络结构部分之后的代码,保持不变
def train(model):model.train()#调用加载数据的函数,获得MNIST训练数据集train_loader = load_data('train')# 使用SGD优化器,learning_rate设置为0.01opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())# 训练5轮EPOCH_NUM = 10# MNIST图像高和宽IMG_ROWS, IMG_COLS = 28, 28loss_list = []for epoch_id in range(EPOCH_NUM):for batch_id, data in enumerate(train_loader()):#准备数据images, labels = dataimages = paddle.to_tensor(images)labels = paddle.to_tensor(labels)#前向计算的过程predicts = model(images)#计算损失,取一个批次样本损失的平均值loss = F.square_error_cost(predicts, labels)avg_loss = paddle.mean(loss)#每训练200批次的数据,打印下当前Loss的情况if batch_id % 200 == 0:loss = avg_loss.numpy()[0]loss_list.append(loss)print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, loss))#后向传播,更新参数的过程avg_loss.backward()# 最小化loss,更新参数opt.step()# 清除梯度opt.clear_grad()#保存模型参数paddle.save(model.state_dict(), 'mnist.pdparams')return loss_listmodel = MNIST()
loss_list = train(model)
http://www.ritt.cn/news/6760.html

相关文章:

  • 百度蜘蛛如何找网站如何免费注册网站平台
  • 破坏网站排名黑帽seo排名技术
  • wordpress 后台介绍seo分析与优化实训心得
  • 网站建设尺寸手机关键词seo排名优化
  • 百度做的网站百度助手手机下载
  • pc做网站服务器手机版百度入口
  • 我做的网站手机上不了百度推广后台登陆
  • 网站运维公司seo的优点
  • css div怎么做网站360推广登陆入口
  • 58网站为啥做不好信息流推广渠道
  • 京东联盟新手没有网站怎么做推广小红书推广平台
  • 如何弄一个网站百度知道在线
  • 网站建设任务优化设计电子版
  • 珠海网站系统建设项目seo 网站排名
  • 高埗镇网站仿做不知怎么入门
  • 企业网站一般用什么程序做百度电脑版官网
  • 公积金网站显示5月2日后做此交易线上营销手段有哪些
  • wordpress强制跳转seo优化的基本流程
  • 株洲做网站建设seo信息是什么
  • 建设网站要什么企业关键词优化最新报价
  • 网站被攻击长沙做优化的公司
  • 做公司网站需要什么全国新冠疫情最新情况
  • 柳州网站虚拟主机公司友情链接平台广告
  • 韶关哪里做网站公司网站域名怎么注册
  • 十大国外新闻网站全网推广费用
  • 网站建设小程序开发seo推广长春模板建站代理
  • 做网站标配seo流量的提升的软件
  • 网站开发开票编码归属项目优化seo
  • 彩票网站招代理广告怎么做传智播客培训机构官网
  • 做网站的公司吉林网站外部优化的4大重点